
Pegleg Documentation
Release 0.1.0

Pegleg Authors

Aug 10, 2021

CONTENTS

1 Overview 1
1.1 Getting Started . 1

2 Design 3
2.1 Definition Artifact Layout . 3
2.2 Definition Library Layout . 4
2.3 Document Fundamentals . 6
2.4 Shared Documents . 6
2.5 Secrets Catalog . 11

3 Developer’s Guide 15
3.1 Developer Overview of Pegleg . 15

4 Operator’s Guide 19
4.1 Pegleg CLI . 19
4.2 Lint Codes . 36
4.3 Pegleg Exceptions . 37

Index 39

i

ii

CHAPTER

ONE

OVERVIEW

1.1 Getting Started

1.1.1 What is Pegleg?

Pegleg is a document aggregator that aggregates all the documents in a repository and packs them into a single YAML
file. This allows for operators to structure their site definitions in a maintainable directory layout, while providing
them with the automation and tooling needed to aggregate, lint, and render those documents for deployment.

For more information on the documents that Pegleg works on see Document Fundamentals.

1.1.2 Basic Usage

Before using Pegleg, you must:

1. Clone the Pegleg repository:

git clone https://git.airshipit.org/airship-pegleg

2. Install Docker CE, as Pegleg relies on it for CLI execution.

3. Clone the repos containing your site definition libraries into the local filesystem where Pegleg is running, as Pegleg
can only work with files available in the local directory.

You will then be able to use all of Pegleg’s features through the CLI. See CLI for more information.

1

https://airship-pegleg.readthedocs.io/en/latest/authoring_strategy.html
https://docs.docker.com/install/
https://airship-pegleg.readthedocs.io/en/latest/artifacts.html#definition-library-layout
https://airship-pegleg.readthedocs.io/en/latest/cli.html

Pegleg Documentation, Release 0.1.0

2 Chapter 1. Overview

CHAPTER

TWO

DESIGN

2.1 Definition Artifact Layout

The definition artifacts are stored in the below directory structure. This structure is used only to assist humans in
maintaining the data. When the documents are consumed by the Airship services, they are viewed as a flat set of all
documents.:

deployment_files/deployment_files
|- /global
| |- /common
| | |- {definition library}
| |- /v1.0
| |- {definition library}
|- /type
| |- /production
| | |- /v1.0
| | |- {definition library}
| |- /cicd
| | |- /v1.0
| | |- {definition library}
| |- /labs
| |- /v1.0
| |- {definition library}
|- /site

|- /{sitename}
|- site_definition.yaml
|- {definition library}

The root-level listings of global, type and site are the layers as listed in the Deckhand LayeringPolicy document.
The process of choosing the definition libraries to compose the actual design for a site is described below.

2.1.1 site_definition.yaml

The site_definition.yaml file is what selects the definition libraries to use for a site. Additional metadata can be added
to this file as needed to meet requirements.:

schema: pegleg/SiteDefinition/v1
metadata:

layeringDefinition:
abstract: false
layer: 'site'

(continues on next page)

3

https://airship-deckhand.readthedocs.io/en/latest/overview.html#layering

Pegleg Documentation, Release 0.1.0

(continued from previous page)

name: 'mtn13b.1'
schema: metadata/Document/v1
storagePolicy: cleartext

data:
site_type: 'cicd'
repositories: # Optional field.
global:

revision: 47676764d3935e4934624bf9593e9115984fe668
url: ssh://REPO_USERNAME@<git_url>:29418/global-manifests.git

secrets:
revision: master
url: ssh://REPO_USERNAME@<git_url>:29418/security-manifests.git

The repositories field (optional) maps default authentication information for each of the manifests repositories
supported, for example:

• global

• secrets

• site

Each of the above fields must have 2 pieces of information:

• revision (required) - specifies a valid Git Reference.

• url (required) - specifies the repository remote path. Consists of the following required segments:

– protocol - http, https, or ssh.

– REPO_USERNAME - must be included for ssh only. Can be overridden with the CLI via Check PKI
Certs.

– port - e.g. 29418 - must be included for ssh only.

– repository name

Self-Contained Repository

Note that if the repositories field is omitted, then this implies that the repository contains all the manifests
required for site deployment. One such example is Airship in a Bottle which hosts all the manifests required for
deploying a minimum OpenStack development environment.

Please see the related CLI documentation for information on how to issue relevant commands.

2.2 Definition Library Layout

The definition library layout is replicated in each location that the site definition contains a set of documents.:

{library root}
|- /schemas
| |- /{namespace}
| |- /{kind}
| |- {version}.yaml
|
|- /profiles
| |- /hardware

(continues on next page)

4 Chapter 2. Design

https://opendev.org/airship/airship-in-a-bottle

Pegleg Documentation, Release 0.1.0

(continued from previous page)

| |- /host
|
|- /pki
| |- kubernetes-nodes.yaml
|
|- /secrets
| |- /certifcate-authorities
| |- /certificates
| |- /keypairs
| |- /passphrases
|
|- /software
| |- /charts
| | |- /{chart collection}
| | | |- dependencies.yaml
| | | |- /{chartgroup}
| | | |- chart-group.yaml
| | | |- {chart1}.yaml
| | | |- {chart2}.yaml
| | |
| | |- /{chart collection}
| | |- dependencies.yaml
| | |- /{chartgroup}
| | |- chart-group.yaml
| | |- {chart1}.yaml
| | |- {chart2}.yaml
| |
| |- /config
| | |- Docker.yaml
| | |- Kubelet.yaml
| | |- versions.yaml
| |
| |- /manifests
| |- bootstrap.yaml
| |- site.yaml
|
|- /networks
| |- /physical
| | |- sitewide.yaml
| | |- rack1.yaml
| |
| |- KubernetesNetwork.yaml
| |- common-addresses.yaml
|
|- /baremetal

|- rack1.yaml
|- rack2.yaml

* Schemas - The schemas should all be sourced from the Airship
service repositories. Care should be taken that the schemas
included in the site definition are taken from the version of
the service being deployed in the site.

* Software

* /config/versions.yaml will contain a manifest of all the
chart, image and package versions. These should be substituted
into all other documents that define version information.

* dependencies.yaml - Contains Armada chart definitions that are
(continues on next page)

2.2. Definition Library Layout 5

Pegleg Documentation, Release 0.1.0

(continued from previous page)

only utilized as dependencies for other charts (e.g. helm-toolkit)

* Chart collection - Loose organization of chart groups
such as 'kubernetes', 'ucp', 'osh'

* Physical networks and baremetal nodes can be split into files
in whatever way makes sense. The best practice here to define
them by racks is only a suggestion.

2.3 Document Fundamentals

The definition of a site consists of a set of small YAML documents that are managed by Deckhand. Each document is
identified by a schema top-level key and the metadata.name value that uniquely identifies a particular document
of the type schema. Deckhand provides functionality allowing documents to be authored such that data from multiple
documents can be merged.

• Abstact vs Concrete - Documents define a value in metadata.layeringDefinition.abstract to
determine if a document is abstract (a value of true) or concrete (a value of false). When calling the
/revisions/{id}/rendered-documents API, only concrete documents are returned.

• Layering - Document layering is used for whole documents that have known defaults but may need to be trans-
formed in specific instances.

• Substitution - Data substitution is used for extracting particular values from a document’s data section (whole
or in-part) and inserting that data into a destination document (at the root of the data section or deeper into a
document).

2.4 Shared Documents

2.4.1 Secrets

Several generic document types exist to support encryption of sensitive data.

These must be utilized for all data considered sensitive.

2.4.2 Global Catalogue Documents

Deckhand’s layering functionality can be utilized in several ways, i.e site definitions. At the global layer there
will be several documents providing different configurations for an object or service. Each of these will be abstract
documents. They can be incorporated into a particular site definition by creating a concrete child document in the
site layer that selects the correct global parent. The child can then do further customization on the configuration
if needed.

As a best practice, global level documents using the catalog pattern should utilize the layering labels component
and configuration to provide a consistent method for children documents select the correct parent. The below
example shows a set of documents for two configuration options for OpenStack Keystone: one using local SQL-backed
identity stores and one using an LDAP backend. A site definition can then select and customize the appropriate option.

When using a catalogue document, it is important to review that document to ensure you understand all the require-
ments for it.

• Abstract documents are not required to be fully formed, so selecting a catalogue document may require the child
document to add data so the document passes validation. In the below example, the child document adds several
required fields to the catalogue Chart: chart_name, release, and namespace.

6 Chapter 2. Design

https://airship-deckhand.readthedocs.io
https://airship-deckhand.readthedocs.io/en/latest/overview.html#layering
https://airship-deckhand.readthedocs.io/en/latest/overview.html#substitution
https://airship-deckhand.readthedocs.io/en/latest/users/document-types.html#provided-utility-document-kinds
https://airship-deckhand.readthedocs.io

Pegleg Documentation, Release 0.1.0

• A catalogue document may define substitutions with the expectation that the substitution source documents
are defined at a lower layer. In the example below, all of the required credentials in the chart are defined as
substitutions in the global catalogue document, but the source documents for the substitutions are defined in
the site layer.

This catalogue pattern can also be utilized for the type layer if needed.

2.4.3 Global Layer

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: ldap-backed-keystone
labels:
component: keystone
configuration: ldap-backed

layeringDefinition:
abstract: true
layer: global

storagePolicy: cleartext
substitutions:
- src:

schema: deckhand/Passphrase/v1
name: keystone_admin_password
path: .

dest:
path: .values.endpoints.identity.auth.admin.password

- src:
schema: deckhand/Passphrase/v1
name: mariadb_admin_password
path: .

dest:
path: .values.endpoints.oslo_db.auth.admin.password

- src:
schema: deckhand/Passphrase/v1
name: mariadb_keystone_password
path: .

dest:
path: .values.endpoints.oslo_db.auth.user.password

- src:
schema: pegleg/SoftwareVersions/v1
name: software-versions
path: .charts.ucp.keystone

dest:
path: .source

- src:
schema: pegleg/StringValue/v1
name: ldap_userid
src: .

dest:
path: .values.conf.ks_domains.cicd.identity.ldap.user
pattern: '(^USERID)'

- src:
schema: deckhand/Passphrase/v1
name: ldap_userid_password

(continues on next page)

2.4. Shared Documents 7

Pegleg Documentation, Release 0.1.0

(continued from previous page)

path: .
dest:
path: .values.conf.ks_domain.cicd.identity.ldap.password

data:
install:
no_hooks: false

upgrade:
no_hooks: false

pre:
delete:

- type: job
labels:
job-name: keystone-db-sync

- type: job
labels:
job-name: keystone-db-init

post:
delete: []
create: []

values:
conf:

keystone:
identity:
driver: sql
default_domain_id: default
domain_specific_drivers_enabled: True
domain_configurations_from_database: True
domain_config_dir: /etc/keystonedomains

ks_domains:
cicd:
identity:

driver: ldap
ldap:
url: "ldap://your-ldap-server.example.com"
user: "USERID@example.com"
password: USERID_PASSWORD_REPLACEME
suffix: "dc=example,dc=com"
query_scope: sub
page_size: 1000
user_tree_dn: "DC=example,DC=com"
user_objectclass: user
user_name_attribute: sAMAccountName
user_mail_attribute: mail
user_enabled_attribute: userAccountControl
user_enabled_mask: 2
user_enabled_default: 512
user_attribute_ignore: "default_project_id,tenants,projects,password"

replicas: 2
labels:

node_selector_key: ucp-control-plane
node_selector_value: enabled

...

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: sql-backed-keystone

(continues on next page)

8 Chapter 2. Design

Pegleg Documentation, Release 0.1.0

(continued from previous page)

labels:
component: keystone
configuration: sql-backed

layeringDefinition:
abstract: true
layer: global

substitutions:
- src:

schema: deckhand/Passphrase/v1
name: keystone_admin_password
path: .

dest:
path: .values.endpoints.identity.auth.admin.password

- src:
schema: deckhand/Passphrase/v1
name: mariadb_admin_password
path: .

dest:
path: .values.endpoints.oslo_db.auth.admin.password

- src:
schema: deckhand/Passphrase/v1
name: mariadb_keystone_password
path: .

dest:
path: .values.endpoints.oslo_db.auth.user.password

- src:
schema: pegleg/SoftwareVersions/v1
name: software-versions
path: .charts.ucp.keystone

dest:
path: .source

data:
timeout: 300
install:
no_hooks: false

upgrade:
no_hooks: false
pre:

delete:
- name: keystone-bootstrap
type: job
labels:

application: keystone
component: bootstrap

- name: keystone-credential-setup
type: job
labels:

application: keystone
component: credential-setup

- name: keystone-db-init
type: job
labels:

application: keystone
component: db-init

- name: keystone-db-sync
type: job
labels:

(continues on next page)

2.4. Shared Documents 9

Pegleg Documentation, Release 0.1.0

(continued from previous page)

application: keystone
component: db-sync

- name: keystone-fernet-setup
type: job
labels:

application: keystone
component: fernet-setup

values: {}
source: {}

...

2.4.4 Site Layer

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: ucp-helm-toolkit
layeringDefinition:
abstract: false
layer: site

substitutions:
- src:

schema: pegleg/SoftwareVersions/v1
name: software-versions
path: .charts.ucp.helm-toolkit

dest:
path: .source

data:
chart_name: ucp-helm-toolkit
release: ucp-helm-toolkit
namespace: ucp
timeout: 100
values: {}
source: {}
dependencies: []

...

schema: armada/Chart/v1
metadata:

schema: metadata/Document/v1
name: ucp-keystone
layeringDefinition:
abstract: false
layer: site
parentSelector:
component: keystone
configuration: ldap-backed

actions:
- method: merge

path: .
data:
chart_name: ucp-keystone
release: ucp-keystone
namespace: ucp

(continues on next page)

10 Chapter 2. Design

Pegleg Documentation, Release 0.1.0

(continued from previous page)

dependencies:
- ucp-helm-toolkit

...

schema: deckhand/Passphrase/v1
metadata:

schema: metadata/Document/v1
name: ldap_userid_password
storagePolicy: encrypted

data: a-secret-password
...

schema: deckhand/Passphrase/v1
metadata:

schema: metadata/Document/v1
name: keystone_admin_password
storagePolicy: encrypted

data: a-secret-password
...

schema: deckhand/Passphrase/v1
metadata:

schema: metadata/Document/v1
name: mariadb_admin_password
storagePolicy: encrypted

data: a-secret-password
...

schema: deckhand/Passphrase/v1
metadata:

schema: metadata/Document/v1
name: mariadb_keystone_password
storagePolicy: encrypted

data: a-secret-password
...

schema: pegleg/StringValue/v1
metadata:

schema: metadata/Document/v1
name: keystone_ldap_userid
storagePolicy: cleartext

data: myuser
...

2.5 Secrets Catalog

2.5.1 Artifacts

Pegleg Document Types

2.5. Secrets Catalog 11

Pegleg Documentation, Release 0.1.0

Overview

Pegleg is not only the custodian of deployment manifests that handles responsibilities such as aggregation and linting,
but is also the author of certain Deckhand-formatted manifests. These manifests are generated via Catalog classes.

Documents

Pegleg generates or ingests each of the documents below, each identified by its schema.

pegleg/PeglegManagedDocument/v1

Pegleg both generates and ingests this type of document. A PeglegManagedDocument can have one or both of
the following data elements:

• generated

• encrypted

A PeglegManagedDocument serves as a wrapper around other documents, and the wrapping serves to capture
additional metadata that is necessary, but separate from the managed document proper.

The managed document data lives in the data.managedDocument portion of a PeglegManagedDocument.

Generated

If a PeglegManagedDocument is generated, then its contents have been created by Pegleg, and it thus includes
provenance information per this example:

schema: pegleg/PeglegManagedDocument/v1
metadata:

name: matches-document-name
schema: deckhand/Document/v1
labels:
matching: wrapped-doc

layeringDefinition:
abstract: true
Pegleg will initially support generation at site level only
layer: site

storagePolicy: encrypted
data:

generated:
at: <timestamp>
by: <author>
specifiedBy:

repo: <...>
reference: <git ref-head or similar>
path: <PKICatalog/PassphraseCatalog details>

managedDocument:
schema: <as appropriate for wrapped document>
metadata:

storagePolicy: encrypted
schema: <as appropriate for wrapped document>
<metadata from parent PeglegManagedDocument>
<any other metadata as appropriate>

data: <generated data>

12 Chapter 2. Design

https://airship-deckhand.readthedocs.io/en/latest/users/documents.html

Pegleg Documentation, Release 0.1.0

Encrypted

If a PeglegManagedDocument is encrypted, then its contents have been encrypted by Pegleg, and it thus
includes provenance information per this example:

schema: pegleg/PeglegManagedDocument/v1
metadata:

name: matches-document-name
schema: deckhand/Document/v1
labels:
matching: wrapped-doc

layeringDefinition:
abstract: false
layer: matching-wrapped-doc

storagePolicy: encrypted
data:

encrypted:
at: <timestamp>
by: <author>

managedDocument:
schema: <as appropriate for wrapped document>
metadata:

storagePolicy: encrypted
schema: <as appropriate for wrapped document>
<metadata from parent PeglegManagedDocument>
<any other metadata as appropriate>

data: <encrypted string blob>

Note that this encrypted has a different purpose than the Deckhand storagePolicy: encryptedmetadata,
which indicates an intent for Deckhand to store a document encrypted at rest in the cluster. The two can be used to-
gether to ensure security. If a document is marked as storagePolicy: encrypted, then automation may val-
idate that it is only persisted (e.g. to a Git repository) if it is in fact encrypted within a PeglegManagedDocument.

Generated & Encrypted

A PeglegManagedDocument that is both generated via a Catalog, and encrypted (as specified by the
Catalog) will contain both generated and encrypted stanzas.

Supported Managed Documents

Supported managed document schemas include one of the following Deckhand schemas:

• Certificates:

– deckhand/Certificate/v1

– deckhand/CertificateKey/v1

• Certificate Authorities:

– deckhand/CertificateAuthority/v1

– deckhand/CertificateAuthorityKey/v1

• Keypairs:

– deckhand/PrivateKey/v1

2.5. Secrets Catalog 13

https://airship-deckhand.readthedocs.io/en/latest/users/encryption.html
https://airship-deckhand.readthedocs.io/en/latest/users/document-types.html#provided-utility-document-kinds

Pegleg Documentation, Release 0.1.0

– deckhand/PublicKey/v1

2.5.2 Public Key Infrastructure (PKI)

Public Key Infrastructure (PKI) Catalog

Configuration for certificate and keypair generation in the cluster. The pegleg secrets generate
certificates command will read all PKICatalog documents and either find pre-existing certificates/keys, or
generate new ones based on the given definition.

Dependencies

Pegleg’s PKI Catalog depends on CloudFlare’s PKI/TLS toolkit, which is installed as a part of Pegleg’s Dockerfile.

Sample Document

Here is a sample document:

Basic example of pki-catalog.yaml for k8s.

schema: promenade/PKICatalog/v1
metadata:

schema: metadata/Document/v1
name: cluster-certificates-addition
layeringDefinition:
abstract: false
layer: site

storagePolicy: cleartext
data:

certificate_authorities:
kubernetes:

description: CA for Kubernetes components
certificates:

- document_name: kubelet-n3
common_name: system:node:n3
hosts:
- n3
- 192.168.77.13

groups:
- system:nodes

...

Certificate Authorities

The data in the certificate-authorities key is used to generate certificates for each authority and node.

Each certificate authority requires essential host-specific information for each node.

14 Chapter 2. Design

https://github.com/cloudflare/cfssl
https://github.com/openstack/airship-pegleg/blob/master/images/pegleg/Dockerfile

CHAPTER

THREE

DEVELOPER’S GUIDE

3.1 Developer Overview of Pegleg

Pegleg’s core mission is to, alongside Deckhand, facilitate document authoring strategies within Airship, by:

• aggregating documents across multiple revisioned repositories, each of which contains multiple documents
defining sites’ software and hardware stacks

• providing early linting of documents prior to their collection and eventual deployment

• including utility functions enabling operators and developers alike to list available sites, render individual man-
ifests via Deckhand, bootstrap repositories with Pegleg-compliant directory layouts, to name a few

3.1.1 Architecture

Pegleg, as a CLI, has a rather simplistic architecture. It is meaningful to visualize Pegleg alongside Deckhand:

15

https://airshipit.readthedocs.io
https://airship-deckhand.readthedocs.io/

Pegleg Documentation, Release 0.1.0

3.1.2 Components

cli

The Pegleg cli module implements the user-facing CLI. For more information about this module, reference the CLI
documentation.

engine

The engine module implements the following functionality:

• document linting

• document rendering via Deckhand

• document aggregation

• additional document utility functions

16 Chapter 3. Developer’s Guide

https://airship-deckhand.readthedocs.io/

Pegleg Documentation, Release 0.1.0

3.1.3 Developer Workflow

Because Airship is a container-centric platform, the developer workflow heavily utilizes containers for testing and
publishing. It also requires Pegleg to produce multiple artifacts that are related, but separate: the Python package, the
Docker image and the Helm chart. The code is published via the Docker image artifact.

Pegleg strives to conform to the Airship coding conventions.

Python

The Pegleg code base lives under pegleg. Pegleg supports py36 interpreter.

Docker

Pegleg Dockerfiles for supported distributions are located in /images/pegleg along with any artifacts built specif-
ically to enable the container image. Make targets are used for generating and testing the artifacts.

• make images - Build the Pegleg Docker image.

Pegleg, as a containerized CLI, uses Docker via tools/pegleg.sh to execute CLI commands. Commands can
also be executed using the Makefile target: run_pegleg.

Virtual Environment

Rather than, after each local code change, rebuilding the Pegleg image and overriding the IMAGE environment variable
so tools/pegleg.sh uses the latest code changes, it is possible to use a virtual environment for much faster
development.

This can achieved by issuing the following commands (from the root Pegleg directory):

Quick way of building a virtualenv and installing all required
dependencies into it.
tox -e py36 --notest
source .tox/py36/bin/activate
pip install -e .

Now is it possible to run the Pegleg CLI to test local changes:
pegleg <command> <options>

Or run unit tests:
pytest -k <regex>

Note that after setting up the virtual environment, one only needs to source it in order to re-run unit tests or Pegleg
CLI commands, to test local changes.

3.1. Developer Overview of Pegleg 17

https://airshipit.readthedocs.io/en/latest/conventions.html

Pegleg Documentation, Release 0.1.0

3.1.4 Testing

All Pegleg tests are nested under tests.

Pegleg comes equipped with a number of tox targets for running unit tests, as well as pep8 and Bandit checks.

Unit Tests

To run all unit tests, execute:

$ tox -e py36

To run unit tests using a regex, execute:

$ tox -e py36 -- <regex>

18 Chapter 3. Developer’s Guide

https://tox.readthedocs.io/
https://www.python.org/dev/peps/pep-0008/
https://github.com/PyCQA/bandit

CHAPTER

FOUR

OPERATOR’S GUIDE

4.1 Pegleg CLI

The Pegleg CLI is used in conjunction with the script located in pegleg/tools called pegleg.sh.

Note: The default workspace for the pegleg.sh script is /workspace. The examples below require that this
workspace be used.

Note: Pegleg collect and render commands generate a deployment-version document containing information gathered
from the site-definition, which includes the specific commit for each repository used and whether that repository was
clean or dirty.

4.1.1 Environment Variables

$WORKSPACE = Location of the folder that holds the repositories containing
the site definition libraries. Pegleg makes no assumptions about the root
directory. $WORKSPACE is /workspace in the container context.

Example: $WORKSPACE=/home/ubuntu/all_repos

$IMAGE = Location of pegleg docker image.

Example: $IMAGE=quay.io/airshipit/pegleg:latest-ubuntu_xenial

4.1.2 Usage

To run:

export WORKSPACE=<repo_location>
export IMAGE=<docker_image>
./pegleg.sh <command> <options>

For example:

cd /opt/airship-pegleg
export WORKSPACE=/opt/airship/treasuremap
./tools/pegleg.sh site -r /workspace --help

19

Pegleg Documentation, Release 0.1.0

Note: If sudo permissions are required to execute pegleg.sh, then it is necessary to use the -E flag with sudo
in order for the current environment to be used. For example:

cd /opt/airship-pegleg
export WORKSPACE=/opt/airship/treasuremap
sudo -E ./tools/pegleg.sh site -r /workspace --help

4.1.3 CLI Options

-v / \-\-verbose (Optional, Default=False).

Enable debug logging.

-l / \-\-logging-level (Optional, Default=40).

Specifies the logging level, as a number, with which to run pegleg. The available levels are as follows:

• 10 (DEBUG)

• 20 (INFO)

• 30 (WARNING)

• 40 (ERROR)

• 50 (CRITICAL)

The -v option will override any logging level specified in favor of DEBUG.

4.1.4 Repo Group

Allows you to perform repository-level operations.

Options

-r / \-\-site-repository (Required).

Path to the root of the site repository (containing site_definition.yaml) repo.

For example: /opt/airship/treasuremap

The revision can also be specified via (for example):

-r /opt/airship/treasuremap@revision

-p / \-\-clone-path (Optional, Default=/tmp/).

The path where the repo will be cloned. By default the repo will be cloned to the /tmp path. If this option is included
and the repo already exists, then the repo will not be cloned again and the user must specify a new clone path or pass
in the local copy of the repository as the site repository. Suppose the repo name is treasuremap and the clone path
is /tmp/mypath then the following directory is created /tmp/mypath/treasuremap which will contain the
contents of the repo. Example of using clone path:

-p /tmp/mypath

20 Chapter 4. Operator’s Guide

Pegleg Documentation, Release 0.1.0

Lint

Sanity checks for repository content (all sites in the repository). To lint a specific site, see site-level linting.

See Linting for more information.

4.1.5 Site Group

Allows you to perform site-level operations.

./pegleg.sh site -r <site_repo> -e <extra_repo> <command> <options>

Options

-r / \-\-site-repository (Required).

Path to the root of the site repository (containing site_definition.yaml) repo.

For example: /opt/airship/treasuremap

The revision can also be specified via (for example):

-r /opt/airship/treasuremap@revision

-e / \-\-extra-repository (Optional).

Path to the root of extra repositories used for overriding those specified under the repositories field in a given
site-definition.yaml.

These should be named per the site-definition file, e.g.:

-e global=/opt/global -e secrets=/opt/secrets

-p / \-\-clone-path (Optional, Default=/tmp/).

The path where the repo will be cloned. By default the repo will be cloned to the /tmp path. If this option is included
and the repo already exists, then the repo will not be cloned again and the user must specify a new clone path or pass
in the local copy of the repository as the site repository. Suppose the repo name is treasuremap and the clone path
is /tmp/mypath then the following directory is created /tmp/mypath/treasuremap which will contain the
contents of the repo. Example of using clone path:

-p /tmp/mypath

Repository Overrides

By default, the revision specified in the site-definition.yaml for the site will be leveraged but can be over-
ridden using:

-e global=/opt/global@revision

-k / \-\-repo-key (Optional, SSH only).

The SSH public key to use when cloning remote authenticated repositories.

Required for cloning repositories via SSH protocol.

-u / \-\-repo-username (Optional, unless required by repo URL).

4.1. Pegleg CLI 21

Pegleg Documentation, Release 0.1.0

The SSH username to use when cloning remote authenticated repositories specified in the site-definition file. Any
occurrences of REPO_USERNAME in an entry under the repositories field in a given site-definition.
yaml will be replaced with this value.

Required for cloning repositories via SSH protocol. This argument will generate an exception if no repo URL uses
REPO_USERNAME.

Examples

Example usage:

./pegleg.sh site -r /opt/site-manifests/ \
-u <AUTH_USER> \
-k /opt/.ssh/git.pub \
-e global=ssh://REPO_USERNAME@<GIT URL>:29418/global-manifests.git@master \
<command> <options>

Collect

Output complete config for one site.

site_name (Required).

Name of the site.

-s / \-\-save-location (Optional).

Where to output collected documents. If omitted, the results will be dumped to stdout.

-x (Optional, validation only).

Will exclude the specified lint option. -w takes priority over -x.

-w (Optional, validation only).

Will warn of lint failures from the specified lint options.

\-\-validate (Optional, validation only, Default=False).

Perform validation of documents prior to collection. See Lint for additional information on document linting. It is
recommended that document linting be executed prior to document collection. However, --validate is False by
default for backwards compatibility concerns.

Usage:

./pegleg.sh <command> <options> collect <site_name> -s <save_location> \
-x P001 -w P002 --validate

22 Chapter 4. Operator’s Guide

Pegleg Documentation, Release 0.1.0

Examples

Example without validation:

./pegleg.sh site -r /opt/site-manifests \
-e global=/opt/manifests \
collect <site_name> -s /workspace

Example with validation:

./pegleg.sh site -r /opt/site-manifests \
-e global=/opt/manifests \
collect <site_name> -s /workspace -x P004 --validate

List

List known sites.

-s / \-\-save-location (Optional, Default=stdout).

Location where the output is saved.

-o / \-\-output (Optional).

Same as -s (–save-location). Deprecated.

./pegleg <command> <options> list

Examples

Example:

./pegleg site -r /opt/site-manifests list -s /workspace

Show

Show details for one site.

site_name (Required).

Name of site.

-s / \-\-save-location (Optional, Default=stdout).

Location where the output is saved.

-o / \-\-output (Optional).

Same as -s (–save-location). Deprecated.

./pegleg <command> <options> show site_name

4.1. Pegleg CLI 23

Pegleg Documentation, Release 0.1.0

Examples

Example:

./pegleg site -r /opt/site-manifests show site_name -s /workspace

Render

Render documents via Deckhand for one site.

site_name (Required).

Name of site.

-s / \-\-save-location (Optional, Default=stdout).

Location where the output is saved.

-o / \-\-output (Optional).

Same as -s (–save-location). Deprecated.

-v / \-\-validate (Optional, Default=True).

Whether to pre-validate documents using built-in schema validation. Skips over externally registered DataSchema
documents to avoid false positives.

./pegleg <command> <options> render site_name

Examples

Example:

./pegleg site -r /opt/site-manifests render site_name -s save_location

Lint

Sanity checks for repository content (for a specific site in the repository). Validations for linting are done utilizing
Deckhand Validations.

To lint all sites in the repository, see repository-level linting.

See Linting for more information.

Examples

Generic example:

./pegleg.sh site -r <site_repo> -e <extra_repo> \
lint <site_name> \
-f -x <lint_code> -w <lint_code>

The most basic way to lint a document set is as follows:

24 Chapter 4. Operator’s Guide

https://airship-deckhand.readthedocs.io/en/latest/users/rendering.html
https://airship-deckhand.readthedocs.io/en/latest/overview.html#validation

Pegleg Documentation, Release 0.1.0

./pegleg.sh site -r <site_repo> -e <extra_repo> lint <site_name>

A more complex example involves excluding certain linting checks:

./pegleg.sh site -r /opt/site-manifests \
-e global=/opt/manifests \
lint <site_name> \
-x P001 -x P002 -w P003

Upload

Uploads documents to Shipyard.

site_name (Required).

Name of the site. The site_name must match a site name in the site repository folder structure

\-\-os-<various> (Required).

Shipyard needs these options for authenticating with OpenStack Keystone. This option can be set as environment
variables or it can be passed via the command line.

Please reference Shipyard’s CLI documentation for information related to these options.

\-\-context-marker (Optional).

Specifies a UUID (8-4-4-4-12 format) that will be used to correlate logs, transactions, etc. in downstream activities
triggered by this interaction.

-b / \-\-buffer-mode (Optional, Default=auto).

Set the buffer mode when uploading documents. Supported buffer modes include append, replace, auto.

append: Add the collection to the Shipyard Buffer, only if that collection does not already exist in the Shipyard buffer.

replace: Clear the Shipyard Buffer before adding the specified collection.

\-\-collection (Required, Default=<site_name>).

Specifies the name of the compiled collection of documents that will be uploaded to Shipyard.

Usage:

./pegleg.sh site <options> upload <site_name> --context-marker=<uuid> \
--buffer-mode=<buffer> \
--collection=<collection>

Site Secrets Group

Subgroup of Site Group. The commands below create PeglegManagedDocument manifests in the local repository.

A sub-group of site command group, which allows you to perform secrets level operations for secrets documents of a
site.

Note: For the CLI commands encrypt, decrypt, generate certificates and wrap in the secrets
command group, which encrypt or decrypt site secrets, two environment variables, PEGLEG_PASSPHRASE, and
PEGLEG_SALT, are used to capture the master passphrase, and the salt needed for encryption and decryption of
the site secrets. The contents of PEGLEG_PASSPHRASE, and PEGLEG_SALT are not generated by Pegleg, but are
created externally, and set by deployment engineers or tooling.

4.1. Pegleg CLI 25

https://opendev.org/airship/shipyard
https://airship-shipyard.readthedocs.io/en/latest/CLI.html#openstack-keystone-authorization-environment-variables

Pegleg Documentation, Release 0.1.0

A minimum length of 24 for master passphrases will be checked by all CLI commands, which use the
PEGLEG_PASSPHRASE and PEGLEG_SALT. All other criteria around master passphrase strength are assumed to be
enforced elsewhere.

./pegleg.sh site -r <site_repo> -e <extra_repo> secrets <command> <options>

Generate PKI (deprecated)

Generate certificates and keys according to all PKICatalog documents in the site using the Public Key Infrastructure
(PKI) Catalog module. The default behavior is to generate all certificates that are not yet present. For example, the first
time generate PKI is run or when new entries are added to the PKICatalogue, only those new entries will be generated
on subsequent runs.

Pegleg also supports a full regeneration of all certificates at any time, by using the –regenerate-all flag.

Pegleg places generated document files in <site>/secrets/passphrases, <site>/secrets/
certificates, or <site>/secrets/keypairs as appropriate:

• The generated filenames for passphrases will follow the pattern <passphrase-doc-name>.yaml.

• The generated filenames for certificate authorities will follow the pattern <ca-name>_ca.yaml.

• The generated filenames for certificates will follow the pattern <ca-name>_<certificate-doc-name>_certificate.
yaml.

• The generated filenames for certificate keys will follow the pattern
<ca-name>_<certificate-doc-name>_key.yaml.

• The generated filenames for keypairs will follow the pattern <keypair-doc-name>.yaml.

Dashes in the document names will be converted to underscores for consistency.

site_name (Required).

Name of site.

-a / \-\-author (Optional).

Identifying name of the author generating new certificates. Used for tracking provenance information in the Pegleg-
ManagedDocuments. An attempt is made to automatically determine this value, but should be provided.

-d / \-\-days (Optional, Default=365).

Duration (in days) certificates should be valid. Minimum=0, no maximum. Values less than 0 will raise an exception.

NOTE: A generated certificate where days = 0 should only be used for testing. A certificate generated in such a way
will be valid for 0 seconds.

\-\-regenerate-all (Optional, Default=False).

Force Pegleg to regenerate all PKI items.

26 Chapter 4. Operator’s Guide

Pegleg Documentation, Release 0.1.0

Examples

./pegleg.sh site -r <site_repo> -e <extra_repo> \
secrets generate-pki \
<site_name> \
-a <author> \
-d <days> \
--regenerate-all

Check PKI Certs

Determine if any PKI certificates from a site are expired, or will be expired within days days. If any are found, print
the cert names and expiration dates to stdout.

-d / \-\-days (Optional, Default=60).

Duration (in days) to check certificate validity from today. Minimum=0, no maximum. Values less than 0 will raise
an exception.

NOTE: Checking PKI certs where days = 0 will check for certs that are expired at the time the command is run.

site_name (Required).

Name of the site. The site_name must match a site name in the site repository folder structure.

Usage:

./pegleg.sh site -r <site_repo> \
secrets check-pki-certs <site_name> <options>

Examples

Example without days specified:

./pegleg.sh site -r <site_repo> secrets check-pki-certs <site_name>

Example with days specified:

./pegleg.sh site -r <site_repo> secrets check-pki-certs <site_name> -d <days>

Secrets

A sub-group of site command group, which allows you to perform secrets level operations for secrets documents of a
site.

Note: For the CLI commands encrypt and decrypt in the secrets command group, which encrypt or
decrypt site secrets, two environment variables, PEGLEG_PASSPHRASE, and PEGLEG_SALT, are used to cap-
ture the master passphrase, and the salt needed for encryption and decryption of the site secrets. The contents of
PEGLEG_PASSPHRASE, and PEGLEG_SALT are not generated by Pegleg, but are created externally, and set by a
deployment engineers or tooling.

A minimum length of 24 for master passphrases will be checked by all CLI commands, which use the
PEGLEG_PASSPHRASE. All other criteria around master passphrase strength are assumed to be enforced elsewhere.

4.1. Pegleg CLI 27

Pegleg Documentation, Release 0.1.0

./pegleg.sh site -r <site_repo> -e <extra_repo> secrets <command> <options>

Encrypt

Encrypt one site’s secrets documents, which have the metadata.storagePolicy set to encrypted, and wrap
them in Pegleg Managed Documents

Note: The encrypt command is idempotent. If the command is executed more than once for a given site, it will
skip the files, which are already encrypted and wrapped in a pegleg managed document, and will only encrypt the
documents not encrypted before.

site_name (Required).

Name of the site. The site_name must match a site name in the site repository folder structure. The encrypt
command looks up the site-name in the site repository, and searches recursively the site_name folder structure
for secrets files (i.e. files with documents, whose encryptionPolicy is set to encrypted), and encrypts the
documents in those files.

-p / \-\-path (Optional).

The file or directory path to encrypt. If a path is not provided, all applicable files discovered in the user specified
repositories for site_name will be encrypted.

-a / \-\-author (Required).

Author is the identifier for the program or the person, who is encrypting the secrets documents. Author is intended to
document the entity or the individual, who encrypts the site secrets documents, mostly for tracking purposes, and is
expected to be leveraged in an operator-specific manner. For instance the author can be the “userid” of the person
running the command, or the “application-id” of the application executing the command.

-s / \-\-save-location (Optional).

Where to output the encrypted and wrapped documents.

Warning: If the save-location parameter is not provided, the encrypted result documents will overwrite the
original cleartext documents for the site. The reason for this default behavior, is to ensure that site secrets are
only stored on disk or in any version control system as encrypted.

If the user for any reason wants to avoid overwriting the original cleartext files, the save-location parameter
will provide the option to override this default behavior, and forces the encrypt command to write the encrypted
documents in a different location than the original unencrypted files.

Usage:

./pegleg.sh site <options> secrets encrypt <site_name> -a <author_id> -s <save_
→˓location>

28 Chapter 4. Operator’s Guide

https://airship-specs.readthedocs.io/en/latest/specs/approved/pegleg-secrets.html#peglegmanageddocument

Pegleg Documentation, Release 0.1.0

Examples

Example with optional save location:

./pegleg.sh site -r /opt/site-manifests \
-e global=/opt/manifests \
-e secrets=/opt/security-manifests \
secrets encrypt <site_name> -a <author_id> -s /workspace

Example without optional save location:

./pegleg.sh site -r /opt/site-manifests \
-e global=/opt/manifests \
-e secrets=/opt/security-manifests \
secrets encrypt <site_name> -a <author_id>

Decrypt

Unwrap one or more encrypted secrets document from Pegleg Managed Documents, decrypt the encrypted secrets,
and dump the cleartext to stdout or a specified location.

site_name (Required).

Name of the site. The site_name must match a site name in the site repository folder structure. This is used to
ensure the correct revision of the site and global repositories are used, as specified in the site’s site-definition.
yaml.

\-\-path (Required). Multiple entries allowed.

Path to pegleg managed encrypted secrets file or directory of files.

-s / \-\-save-location (Optional).

The desired output path for the decrypted file. If not specified, decrypted data will output to stdout.

-o / \-\-overwrite (Optional). False by default.

When set, encrypted file(s) at the specified path will be overwritten with the decrypted data. Overrides
--save-location option.

Usage:

./pegleg.sh site <options> secrets decrypt <site_name> --path <path>
[-s <output_path>]

Examples

Example:

./pegleg.sh site -r /opt/site-manifests \
-e global=/opt/manifests \
-e secrets=/opt/security-manifests \
secrets decrypt site1 \
--path /opt/security-manifests/site/site1/passwords/password1.yaml \
--path /opt/security-manifests/site/site1/passwords/password2.yaml \
--path /opt/security-manifests/site/site1/passwords/passwordN.yaml \
--path /opt/security-manifests/site/site1/certificates

4.1. Pegleg CLI 29

https://airship-specs.readthedocs.io/en/latest/specs/approved/pegleg-secrets.html#peglegmanageddocument

Pegleg Documentation, Release 0.1.0

Wrap

Wrap bare files (e.g. pem or crt) in a PeglegManagedDocument and optionally encrypt them.

site_name (Required).

Name of site.

-a / \-\-author

Identifying name of the author generating new certificates. Used for tracking provenance information in the Pegleg-
ManagedDocuments. An attempt is made to automatically determine this value, but should be provided.

\-\-filename

The relative path to the file to be wrapped.

\-\-save-location

The output path where the wrapped file is saved. (default: input path with the extension replaced with .yaml)

-o / \-\-output-path

Same as –save-location. Deprecated.

-s / \-\-schema

The schema for the document to be wrapped, e.g. deckhand/Certificate/v1

-n / \-\-name

The name for the document to be wrapped, e.g. new-cert.

-l / \-\-layer

The layer for the document to be wrapped, e.g. site.

\-\-encrypt / \-\-no-encrypt (Default=True).

A flag specifying whether to encrypt the output file.

Examples

./pegleg.sh site -r /home/myuser/myrepo \
secrets wrap -a myuser --filename secrets/certificates/new_cert.crt \
--save-location secrets/certificates/new_cert.yaml \
-s "deckhand/Certificate/v1" -n "new-cert" -l site mysite

genesis_bundle

Constructs genesis bundle based on a site configuration.

Note: This command requires the environment variable PEGLEG_PASSPHRASE to be set and at least 24 characters
long, to be used for encrypting genesis bundle data. PEGLEG_SALT must be set as well. There are no constraints on
its length, but at least 24 characters is recommended.

PROMENADE_ENCRYPTION_KEY environment variable is required only if manifests specify an encryption policy.
There are no constraints on its length or character pools.

-b / \-\-build-dir (Required).

30 Chapter 4. Operator’s Guide

Pegleg Documentation, Release 0.1.0

Destination directory for the genesis bundle.

\-\-include-validators (Optional, Default=False).

A flag to request build genesis validation scripts as well.

Usage:

::

./pegleg.sh site <options> genesis_bundle <site_name> -b <build_locaton> -k <encryp-
tion_passphrase/key> –include-validators

Examples

./pegleg.sh site -r ./site-manifests \
genesis_bundle site1 \
-b ../../site1_build \
-k yourEncryptionPassphrase \
--include-validators

generate

A sub-group of secrets command group, which allows you to auto-generate secrets documents of a site.

Note: The types of documents that pegleg cli generates are passphrases, certificate authorities, certificates and keys.
Passphrases are declared in a new pegleg/PassphraseCatalog/v1 document, while CAs, certificates, and
keys are declared in the pegleg/PKICatalog/v1.

The pegleg/PKICatalog/v1 schema is identical with the existing promenade/PKICatalog/v1, prome-
nade currently uses to generate the site CAs, certificates, and keys.

The pegleg/PassphraseCatalog/v1 schema is specified in Pegleg Passphrase Catalog

./pegleg.sh site -r <site_repo> -e <extra_repo> secrets generate <command> <options>

certificates

Generate certificates and keys according to all PKICatalog documents in the site using the Public Key Infrastructure
(PKI) Catalog module. The default behavior is to generate all certificates that are not yet present. For example, the first
time generate PKI is run or when new entries are added to the PKICatalogue, only those new entries will be generated
on subsequent runs.

Pegleg also supports a full regeneration of all certificates at any time, by using the \-\-regenerate-all flag.

Pegleg places generated document files in <site>/secrets/passphrases, <site>/secrets/
certificates, or <site>/secrets/keypairs as appropriate:

• The generated filenames for passphrases will follow the pattern <passphrase-doc-name>.yaml.

• The generated filenames for certificate authorities will follow the pattern <ca-name>_ca.yaml.

• The generated filenames for certificates will follow the pattern <ca-name>_<certificate-doc-name>_certificate.
yaml.

4.1. Pegleg CLI 31

https://airship-specs.readthedocs.io/en/latest/specs/approved/pegleg-secrets.html#document-generation

Pegleg Documentation, Release 0.1.0

• The generated filenames for certificate keys will follow the pattern
<ca-name>_<certificate-doc-name>_key.yaml.

• The generated filenames for keypairs will follow the pattern <keypair-doc-name>.yaml.

Dashes in the document names will be converted to underscores for consistency.

site_name (Required).

Name of site.

-a / \-\-author (Optional).

Identifying name of the author generating new certificates. Used for tracking provenance information in the Pegleg-
ManagedDocuments. An attempt is made to automatically determine this value, but should be provided.

-d / \-\-days (Optional, Default=365).

Duration (in days) certificates should be valid. Minimum=0, no maximum. Values less than 0 will raise an exception.

NOTE: A generated certificate where days = 0 should only be used for testing. A certificate generated in such a way
will be valid for 0 seconds.

-s / \-\-save-location

Directory to store the generated site certificates in. It will be created automatically, if it does
not already exist. The generated, wrapped, and encrypted passphrases files will be saved in:
<save_location>/site/<site_name>/secrets/certificates/ directory. Defaults to site repository path if no value
given.’

\-\-regenerate-all (Optional, Default=False).

Force Pegleg to regenerate all PKI items.

Examples

./pegleg.sh site -r <site_repo> -e <extra_repo> \
secrets generate certificates \
<site_name> \
-a <author> \
-d <days> \
-s <save_location>
--regenerate-all

passphrases

Generates, wraps and encrypts passphrase documents specified in the pegleg/PassphraseCatalog/v1 docu-
ment for a site. The site name, and the directory to store the generated documents are provided by the site_name,
and the save_location command line parameters respectively. The generated passphrases are stored in:

<save_location>/site/<site_name>/passphrases/<passphrase_name.yaml>

The schema for the generated passphrases is defined in Pegleg Managed Documents

site_name (Required).

Name of the site. The site_name must match a site name in the site repository folder structure. The
generate command looks up the site-name, and searches recursively the site_name folder structure in the

32 Chapter 4. Operator’s Guide

https://airship-specs.readthedocs.io/en/latest/specs/approved/pegleg-secrets.html#peglegmanageddocument

Pegleg Documentation, Release 0.1.0

site repository for pegleg/PassphraseCatalog/v1 documents. Then it parses the passphrase catalog docu-
ments it found, and generates one passphrase document for each passphrase document_name declared in the site
passphrase catalog.

-a / \-\-author (Required)

Author is intended to document the application or the individual, who generates the site passphrase documents,
mostly for tracking purposes. It is expected to be leveraged in an operator-specific manner. For instance the author
can be the “userid” of the person running the command, or the “application-id” of the application executing the
command.

-s / \-\-save-location (Required).

Where to output generated passphrase documents. The passphrase documents are placed in the following folder
structure under save_location:

<save_location>/site/<site_name>/secrets/passphrases/<passphrase_name.yaml>

-c / \-\-passphrase-catalog (Optional).

Specifies a path for a passphrase catalog file to use instead of the catalogs found in the repositories specified by
the user. The specified catalog will be used when this option is specified and all other discovered catalogs will be
disregarded. This can be used to specify a subset of passphrases to generate instead of the whole catalog or for testing
new passphrases before merging them into production.

-i / \-\-interactive (Optional). False by default.

Enables input prompts for “prompt: true” passphrases. Input prompts are otherwise disabled by default and prompted
passphrases will be skipped.

\-\-force-cleartext (Optional). False by default.

Force cleartext generation of passphrases. This is not recommended.

Usage:

./pegleg.sh site <options> secrets generate passphrases <site_name> -a
<author_id> -s <save_location>

Example

./pegleg.sh site -r /opt/site-manifests \
-e global=/opt/manifests \
-e secrets=/opt/security-manifests \
secrets generate passphrases <site_name> -a <author_id> -s /workspace

4.1.6 CLI Repository Overrides

Repository overrides should only be used for entries included underneath the repositories field for a given
site-definition.yaml.

Overrides are specified via the -e flag for all Site Group commands. They have the following format:

-e <REPO_NAME>=<REPO_PATH_OR_URL>@<REVISION>

Where:

• REPO_NAME is one of: global, secrets or site.

4.1. Pegleg CLI 33

Pegleg Documentation, Release 0.1.0

• REPO_PATH_OR_URL is one of:

– path (relative or absolute) - /opt/global or ../global though absolute is recommended

– url (fully qualified) - must have following formats:

* ssh - <PROTOCOL>://<REPO_USERNAME>@<GIT URL>:<PORT>/<REPO_NAME>.git

* http|https - <PROTOCOL>://<GIT URL>/<REPO_NAME>.git

Where:

– <PROTOCOL> must be a valid authentication protocol: ssh, https, or http

– <REPO_USERNAME> must be a user with access rights to the repository. This value will replace the
literal string REPO_USERNAME in the corresponding entry under the repositories field in the rel-
evant site-definition.yaml using -u CLI flag

– <GIT_URL> must be a valid Git URL

– <PORT> must be a valid authentication port for SSH

– <REVISION> must be a valid Git Reference

– <REPO_NAME> must be a valid Git repository name, e.g. site-manifests

Self-Contained Repository

For self-contained repositories, specification of extra repositories is unnecessary. The following command can be used
to deploy the manifests in the example repository /opt/airship-in-a-bottle for the currently checked out
revision:

pegleg site -r /opt/airship-in-a-bottle/deployment_files <command> <options>

To specify a specific revision at run time, execute:

pegleg site -r /opt/airship-in-a-bottle/deployment_files@<REVISION> \
<command> <options>

Where <REVISION> must be a valid Git Reference.

Git Reference

Valid Git references for checking out repositories include:

• 47676764d3935e4934624bf9593e9115984fe668 (commit ID)

• refs/changes/79/47079/12 (ref)

• master (branch name)

34 Chapter 4. Operator’s Guide

Pegleg Documentation, Release 0.1.0

4.1.7 Linting

-f / \-\-fail-on-missing-sub-src (Optional, Default=True).

Raise Deckhand exception on missing substitution sources.

-x (Optional).

Will exclude the specified lint option. -w takes priority over -x.

-w (Optional).

Will warn of lint failures from the specified lint options.

If you expect certain lint failures, then those lint options can be excluded or you can choose to be warned about those
failures using the codes below.

P001 - Document has storagePolicy cleartext (expected is encrypted) yet its schema is a mandatory encrypted type.

Where mandatory encrypted schema type is one of:

• deckhand/CertificateAuthorityKey/v1

• deckhand/CertificateKey/v1

• deckhand/Passphrase/v1

• deckhand/PrivateKey/v1

P002 - Deckhand rendering is expected to complete without errors. P003 - All repos contain expected directories.

4.1.8 Generate

Allows you to perform generate operations.

Passphrase

Generate a passphrase and print to stdout.

-l / \-\-length (Optional, Default=24).

Length of passphrase to generate. Minimum length is 24. Lengths less than minimum will default to 24. No maximum
length.

Usage:

./pegleg.sh generate passphrase -l <length>

Examples

Example without length specified:

./pegleg.sh generate passphrase

Example with length specified:

./pegleg.sh generate passphrase -l <length>

4.1. Pegleg CLI 35

Pegleg Documentation, Release 0.1.0

Salt

Generate a salt and print to stdout.

-l / \-\-length (Optional, Default=24).

Length of salt to generate. Minimum length is 24. Lengths less than minimum will default to 24. No maximum length.

Usage:

./pegleg.sh generate salt -l <length>

Examples

Example without length specified:

./pegleg.sh generate salt

Example with length specified:

./pegleg.sh generate salt -l <length>

4.2 Lint Codes

4.2.1 Overview

Below are the lint codes that are used by the lint Pegleg CLI command.

4.2.2 Codes

• P001 - Document has storagePolicy cleartext (expected is encrypted) yet its schema is a mandatory encrypted
type.

Where mandatory encrypted schema type is one of:

– deckhand/CertificateAuthorityKey/v1

– deckhand/CertificateKey/v1

– deckhand/Passphrase/v1

– deckhand/PrivateKey/v1

See the Deckhand Utility Document Kinds documentation for more information.

• P003 - All repos contain expected directories.

• P004 - Duplicate Deckhand DataSchema document detected.

• P005 - Deckhand rendering exception.

• P006 - YAML file missing document header (---).

• P007 - YAML file is not valid YAML.

• P008 - Document metadata.layeringDefinition.layer does not match its location in the site man-
ifests tree (e.g. document with site layer should be found in folder named site).

36 Chapter 4. Operator’s Guide

https://airship-deckhand.readthedocs.io/en/latest/users/document-types.html#provided-utility-document-kinds
https://airship-deckhand.readthedocs.io/en/latest/document-types.html?highlight=dataschema#dataschema

Pegleg Documentation, Release 0.1.0

• P009 - Document found in secrets folder in site manifests repository but doesn’t have storagePolicy:
encrypted set.

• P010 - Site folder in manifests repository is missing site-definition.yaml

• P011 - site-definition.yaml failed Pegleg schema validation.

4.3 Pegleg Exceptions

4.3.1 Base Exceptions

exception pegleg.engine.exceptions.PeglegBaseException(message=None, **kwargs)
The base Pegleg exception for everything.

message = 'Base Pegleg exception'

4.3.2 Git Exceptions

exception pegleg.engine.exceptions.GitConfigException(message=None, **kwargs)
Bases: pegleg.engine.exceptions.PeglegBaseException

Exception that occurs when reading Git repo config fails.

message = 'Failed to read Git config file for repo path: %(repo_url)s'

exception pegleg.engine.exceptions.GitException(message=None, **kwargs)
Bases: pegleg.engine.exceptions.PeglegBaseException

Exception when an error occurs cloning a Git repository.

message = 'Git exception occurred: [%(location)s] may not be a valid git repository. Details: %(details)s'

exception pegleg.engine.exceptions.GitAuthException(message=None, **kwargs)
Bases: pegleg.engine.exceptions.PeglegBaseException

Exception that occurs when authentication fails for cloning a repo.

message = 'Failed to authenticate for repo %(repo_url)s with ssh-key at path %(ssh_key_path)s'

exception pegleg.engine.exceptions.GitProxyException(message=None, **kwargs)
Bases: pegleg.engine.exceptions.PeglegBaseException

Exception when cloning through proxy.

message = 'Could not resolve proxy [%(location)s]'

exception pegleg.engine.exceptions.GitSSHException(message=None, **kwargs)
Bases: pegleg.engine.exceptions.PeglegBaseException

Exception that occurs when an SSH key could not be found.

message = 'Failed to find specified SSH key: %(ssh_key_path)s'

exception pegleg.engine.exceptions.GitInvalidRepoException(message=None,
**kwargs)

Bases: pegleg.engine.exceptions.PeglegBaseException

Exception raised when an invalid repository is detected.

message = 'The repository path or URL is invalid: %(repo_url)s'

4.3. Pegleg Exceptions 37

Pegleg Documentation, Release 0.1.0

4.3.3 Authentication Exceptions

exception pegleg.engine.util.shipyard_helper.AuthValuesError(*, diagnostic)
Shipyard authentication failed.

4.3.4 PKI Exceptions

exception pegleg.engine.exceptions.IncompletePKIPairError(message=None,
**kwargs)

Exception for incomplete private/public keypair.

4.3.5 Genesis Bundle Exceptions

exception pegleg.engine.exceptions.GenesisBundleEncryptionException(message=None,
**kwargs)

Bases: pegleg.engine.exceptions.PeglegBaseException

Exception raised when encryption of the genesis bundle fails.

message = 'Encryption is required for genesis bundle, but no encryption policy or key is specified.'

exception pegleg.engine.exceptions.GenesisBundleGenerateException(message=None,
**kwargs)

Bases: pegleg.engine.exceptions.PeglegBaseException

Exception raised when pormenade engine fails to build the genesis bundle.

4.3.6 Passphrase Exceptions

exception pegleg.engine.exceptions.PassphraseCatalogNotFoundException(message=None,
**kwargs)

Bases: pegleg.engine.exceptions.PeglegBaseException

Failed to find Catalog for Passphrases generation.

message = 'Could not find the Passphrase Catalog to generate the site Passphrases!'

38 Chapter 4. Operator’s Guide

INDEX

A
AuthValuesError, 38

G
GenesisBundleEncryptionException, 38
GenesisBundleGenerateException, 38
GitAuthException, 37
GitConfigException, 37
GitException, 37
GitInvalidRepoException, 37
GitProxyException, 37
GitSSHException, 37

I
IncompletePKIPairError, 38

M
message (pegleg.engine.exceptions.GenesisBundleEncryptionException

attribute), 38
message (pegleg.engine.exceptions.GitAuthException

attribute), 37
message (pegleg.engine.exceptions.GitConfigException

attribute), 37
message (pegleg.engine.exceptions.GitException

attribute), 37
message (pegleg.engine.exceptions.GitInvalidRepoException

attribute), 37
message (pegleg.engine.exceptions.GitProxyException

attribute), 37
message (pegleg.engine.exceptions.GitSSHException

attribute), 37
message (pegleg.engine.exceptions.PassphraseCatalogNotFoundException

attribute), 38
message (pegleg.engine.exceptions.PeglegBaseException

attribute), 37

P
PassphraseCatalogNotFoundException, 38
PeglegBaseException, 37

39

	Overview
	Getting Started

	Design
	Definition Artifact Layout
	Definition Library Layout
	Document Fundamentals
	Shared Documents
	Secrets Catalog

	Developer’s Guide
	Developer Overview of Pegleg

	Operator’s Guide
	Pegleg CLI
	Lint Codes
	Pegleg Exceptions

	Index

