airship-specs Documentation
Release 0.1.0

Airship Authors

Nov 14, 2019

Contents

1 About Specs
2 Airship 2.x
3 Airship 1.x

Index

13

67

airship-specs Documentation, Release 0.1.0

genindex

Contents 1

airship-specs Documentation, Release 0.1.0

2 Contents

CHAPTER 1

About Specs

1.1 Instructions

 Use the template.rst as the basis of your specification.

Attempt to detail each applicable section.
* If a section does not apply, use N/A, and optionally provide a short explanation.

* New specs for review should be placed in the approved subfolder of 1.x or 2. x directories (depending on
Airship version they primarily belong to), where they will undergo review and approval in Gerrit.

* Test if the spec file renders correctly in a web-browser by running make docs command and opening doc/
build/html/index.html in a web-browser. Ubuntu needs the following packages to be installed:

apt-get install -y make tox gcc python3-dev

* Specs that have finished implementation should be moved to the implemented subfolder of respective 1. x
or 2 . x directories.

1.1.1 Indexing and Categorization

Use of the index directive in reStructuredText for each document provides the ability to generate indexes to more
easily find items later. Authors are encouraged to use index entries for their documents to help with discovery.

1.1.2 Naming

Document naming standards help readers find specs. For the Airship repository, the following document naming is
recommended. The categories listed here are likely incomplete, and may need expansion to cover new cases. It is
preferrable to deviate (and hopefully amend the list) than force document names into nonsense categories. Prefer
using categories that have previously been used or that are listed here over new categories, but don’t force the category
into something that doesn’t make sense.

https://review.openstack.org/#/q/project:openstack/airship-specs
http://www.sphinx-doc.org/en/stable/markup/misc.html#directive-index

airship-specs Documentation, Release 0.1.0

Document names should follow a pattern as follows:

[category]_title.rst

Use the following guidelines to determine the category to use for a document:
1. For new functionality and features, the best choice for a category is to match a functional duty of Airship.

site-definition Parts of the platform that support the definition of a site, including management of the yaml
definitions, document authoring and translation, and the collation of source documents.

genesis Used for the steps related to preparation and deployment of the genesis node of an Airship deployment.

baremetal Those changes to Airflow that provide for the lifecycle of bare metal components of the system -
provisioning, maintenance, and teardown. This includes booting, hardware and network configuration,
operating system, and other host-level management

k8s For functionality that is about interfacing with Kubernetes directly, other than the initial setup that is done
during genesis.

software Functionality that is related to the deployment or redeployment of workload onto the Kubernetes
cluster.

workflow Changes to existing workflows to provide new functionality and creation of new workflows that span
multiple other areas (e.g. baremetal, k8s, software), or those changes that are new arrangements of existing
functionality in one or more of those other areas.

administration Security, logging, auditing, monitoring, and those things related to site administrative functions
of the Airship platform.

2. For specs that are not feature focused, the component of the system may be the best choice for a category, e.g.
shipyard, armada etc... When there are multiple components involved, or the concern is cross cutting, use
of airship is an acceptable category.

3. If the spec is related to the ecosystem Airship is maintained within, an appropriate category would be related to
the aspect it is impacting, e.g.: git, docker, zuul, etc...

Note: Blueprints are written using ReSTructured text.

Add index directives to help others find your spec by keywords. E.g.:

index::
single: template
single: creating specs

1.2 Template: The title of your blueprint
Introduction paragraph — What is this blueprint about?

1.2.1 Links

Include pertinent links to where the work is being tracked (e.g. Storyboard ID and Gerrit topics), as well as any other
foundational information that may lend clarity to this blueprint

4 Chapter 1. About Specs

airship-specs Documentation, Release 0.1.0

1.2.2 Problem description

A detailed description of the problem being addressed or solved by this blueprint

1.2.3 Impacted components

List the Airship components that are impacted by this blueprint

1.2.4 Proposed change

Provide a detailed description of the change being proposed. Include how the problem will be addressed or solved.

If this is an incremental part of a larger solution or effort, provide the specific scope of this blueprint, and how it fits
into the overarching solution.

Details of changes to specific Airship components should be specified in this section, as well as interaction between
those components.

Special attention should be given to interfaces between components. New interfaces shuld attempt to follow established
patterns within Airship, or should be evaluated for suitability as new precedent.

If this blueprint changes testing needs or approaches, that information should be disclosed here, and should be regarded
as part of the deliverable related to this design.

If this blueprint introduces new functionality that requires new kinds of documentation, or a change to the documen-
tation processes, that information should be included in this section.

Security impact

Details of any security-related concerns that this proposed change introduces or addresses.

Performance impact

Analysis of performance changes that are introduced or addressed with this proposed design.

Alternatives

If other approaches were considered, include a summary of those here, and a short discussion of why the proposed
approach is preferred.

1.2.5 Implementation

If known, include any information detailing assigned individuals, proposed milestones, intermediate deliverable prod-
ucts, and work items.

If there are Assignee(s) or Work Items, use a sub-heading for that information.

1.2.6 Dependencies

If there are any dependencies on other work, blueprints, or other things that impact the ability to deliver this solution,
include that information here.

1.2. Template: The title of your blueprint 5

airship-specs Documentation, Release 0.1.0

1.2.7 References

Any external references (other than the direct links above)

6 Chapter 1. About Specs

CHAPTER 2

Airship 2.x

2.1 Approved Specs

2.1.1 Airshipctl Bootstrap Image Generator

This spec defines the new isogen sub-command for airshipctl bootstrap and describes the interface for
image builder. Airship CLI tool will be extended with an ability to generate an ISO image or image for USB stick.
This image can be used to boot up an ephemeral node with Kubernetes cluster installed.

Links

Jira tasks:
e airshipctl bootstrap isogen
e LiveCD PoC
* ISO builder contract spec
* isogen subcommand spec
¢ Sub command implementation

* Cloud-init generator

Problem Description

Common approach for spinning new Kubernetes cluster is Cluster API deployed on top of a small single node cluster
based on kind or minikube. In order to create Kubernetes cluster on hardware nodes in Data Center user must
deploy this single node cluster on a virtual machine attached to PXE network or to deploy operating system and
Kubernetes cluster to one of the hardware servers.

https://airship.atlassian.net/browse/AIR-98
https://airship.atlassian.net/browse/AIR-132
https://airship.atlassian.net/browse/AIR-133
https://airship.atlassian.net/browse/AIR-136
https://airship.atlassian.net/browse/AIR-137
https://airship.atlassian.net/browse/AIR-145

airship-specs Documentation, Release 0.1.0

In scope of Airship 2.0 user needs to be able to bootstrap ephemeral Kubernetes cluster with minimal required services
(e.g. Cluster API, Metal3, etc). Ephemeral Cluster should be deployed remotely (if possible) and deployment process
needs to be fully automated.

Impacted Components

* airshipctl

Proposed Change
Airship 2.0 command line tool (i.e. airshipctl) will be able to perform full cycle of bootstrapping ephemeral
Kubernetes node.

First bootstrap step is to generate ISO or flash drive image. Image generator is executed inside of a container and
returns LiveCD or LiveUSB image.

Image generator must implement interface defined below (see /mage Generator Container Interface section) since
isogen command treats image generator container as a black box.

Airshipctl Subcommand

airshipctl bootstrap is extended with i sogen subcommand. Subcommand is extendable by adding Con-
tainer Runtime Interface drivers.

Command flags:

e —c or ——conf Configuration file (YAML-formatted) path for ISO builder container. If option is omitted
airshipctl config is used to determine isogen configuration file path. This configuration file is used
to identify container execution options (e.g. CRI, volume binds etc) and as a source of ISO builder parameters
(e.g. cloud-init configuration file name). File format described in Command and ISO Builder Configuration File
Format

Command arguments:
e — can be used when rendered document model has been passed to STDIN.
Subcommand should implement following steps:

e Utilize the airshipctl config to identify the location of YAML documents which contains site informa-
tion.

* Extract information for ephemeral node from the appropriate documents, such as IP, Name, MAC, etc.
* Generate the appropriate user-data and network-config for Cloud-Init.

» Execute container with ISO builder and put YAML-formatted builder config, user-data and network-config to a
container volume.

YAML manipulations which are required for operations described above rely on functions and methods that have been
implemented as a part of airshipctl document command.

Image Generator Container Interface

Image generator container input.

* Volume (host directory) mounted to certain directory in container. Example: docker run -v /source/
path/on/host:/dst/path/in/container

8 Chapter 2. Airship 2.x

airship-specs Documentation, Release 0.1.0

* YAML-formatted configuration file saved on the mounted volume. Described in Command and ISO Builder
Configuration File Format

 Shell environment variable BUILDER_CONFIG which contains ISO builder configuration file path (e.g. if
volume is bound to /data in the container then BUILDER_CONFIG=/data/isogen.yaml).

¢ Cloud-init configuration file named according to userDataFileName parameter of builder section spec-
ified in ISO builder configuration file. User data file must be placed to the root of the volume which is bound to
the container.

* Network configuration for cloud init (i.e. network-config) named according to networkConfigFileName
parameter of builder section specified in ISO builder configuration file. Network configuration file must be
placed in the root of the volume which is bound to the container.

Image generator output.

* YAML-formatted metadata file which describes output artifacts. File name for metadata is specified in
builder section of ISO builder configuration file (see Command and ISO Builder Configuration File Format
for details). Metadata file name is specified in ait shipct1 configuration files and handeled by airshipctl
config command. Metadata must satisfy following schema.

$schema: 'http://Jjson-schema.org/schema#’
type: 'object'
properties:
bootImagePath:
type: 'string'
description: >

* ISO or flash disk image placed according to boot ImagePath parameter of output metadata file.

Command and ISO Builder Configuration File Format

YAML formatted configuration file is used for both isogen command and ISO builder container. Configuration file
is copied to volume directory on the host. ISO builder uses shell environment variable BUILDER_CONF IG to read
determine configuration file path inside container.

Configuration file format.

$schema: 'http://Jjson-schema.org/schemat#'
type: 'object'
properties:

container:

type: 'object'
description: 'Configuration parameters for container'
properties:
volume:
type: 'string'
description: >

image:

type: 'string'

description: 'ISO generator container image URL'
containerRuntime:

type: 'string'

(continues on next page)

2.1.

Approved Specs 9

airship-specs Documentation, Release 0.1.0

(continued from previous page)

description: >

privileged:
type: 'bool'
description: >

builder:
type: 'object'
description: 'Configuration parameters for ISO builder'
properties:
userDataFileName:
type: 'string'
description: >

networkConfigFileName:
type: 'string'
description: >

outputMetadataFileName:
type: 'string'
description: 'File name for output matadata’

Security Impact

* Kubernetes Certificates are saved on the ISO along with other Cloud Init configuration parameters.

¢ Clound-init contains sensitive information (e.g. could contain ssh keys).

Performance impact

None

Alternatives

* Modify existing LiveCD ISO image using Golang library.
— Requires implementation of ISO modification module in Golang.

— Each time user generated new image ISO content has to be copied to temporary build directory since ISO
9660 is read only file system.

— Support multiple operating systems is challenging since there is no standard for ISO image directory
structure and live booting.

Implementation

* Image Generator reference implementation based on Debian container from airship/images Git repository
— Dockerfile with all packages required to build LiveCD ISO.

— Builder script.

10 Chapter 2. Airship 2.x

airship-specs Documentation, Release 0.1.0

e airshipctl bootstrap extension with new command (i.e. airshipctl bootstrap isogen)
— Define interface for running container execution which enables following methods:
* Pull image: download container image if it’s not presented locally

Run container: start container, wait for builder script is finished, output builder log if CLI debug flag
is enabled

+ Run container with output: executes run container method and prints its STDOUT
* Remove container: removes container if command execution successful.

— Implement interface for docker Container Runtime Environment

Dependencies

* New version of hardware nodes definition format in Treasuremap since Metal3-10 will replace MAAS for
Airship 2.0

References
None
2.2 Implemented Specs

2.2.1 Placeholder

Please, remove me once any new spec is added into this directory.

2.2. Implemented Specs 11

airship-specs Documentation, Release 0.1.0

12 Chapter 2. Airship 2.x

CHAPTER 3

Airship 1.x

3.1 Approved Specs

3.1.1 Airship Copilot
Copilot is an Electron application that can interface with Airship CLIs and REST interfaces. This tool will wrap SSH

sessions and HTTP/HTTPS calls to Airship components. The responses will be enhanced with a GUI (links for more
commands, color coded, formatting, etc.).

Links

None

Problem description

Airship can be difficult to approach as a user. There are lots of commands to know with lots of data to interpret.

Impacted components

None.

Proposed change

Create an Electron application that simplifies the experience of accessing Airship. The application will be 100% client
side, thus no change to the Airship components. The application will default to use HTTP/HTTPS APIs, but will be
able to use the CLI commands when needed via an SSH connection. All of the raw commands input and output will
be available for the user to see, with the goal of the user not needing to look at the raw input/output.

The application will start as a GUI interface to Shipyard.

13

airship-specs Documentation, Release 0.1.0

 Shipyard - API calls (create, commit, get, logs, etc.) - CLI commands (create, commit, get, logs, etc.) -
From a list of actions drill down into logs

The GUI will create links to additional commands based off of the response. The GUI can color code different aspects
of the response and format it. An example would be when Shipyard returns a list of tasks, that list can be used to create
hyperlinks to drill down on that task (details, logs, etc.).

The GUI could start by looking similar to the CLI. Where the values in the different columns would be buttons/links
to call additional commands for more information.

Name Action Lifecycle .
—Execution Time Step Succ/Fail/Oth Footnotes

deploy_site action/01BTP9T2WCE1PAJR2DWYXG805V Failed 2017-09-
—23T02:42:12 12/1/3 (1)

update_site action/01BZZKMW60DV2CJZ858QZ93HRS Processing 2017-09-
—23T04:12:21 6/0/10 (2)

Security impact

None - This will continue to use HTTP/HTTPS and SSH just like today, the only difference is that it is wrapped in an
application.

Performance impact

Minimal - Wrapping the commands in an Electron application might add a little latency, but only on the client side.

Future plans

Extend to other Airship components. Pegleg seems like the next step, but any componment with an exposed API/CLI.

Dependencies

None

References

3.1.2 Airship Multiple Linux Distribution Support
Various Airship services were developed originally around Ubuntu. This spec will add the ability in Airship to plug in

Linux Distro’s, refactor the existing Ubuntu support as the default Linux distro plugin, and add openSUSE and other
Linux distro’s as new plugins.

Links

The work to author and implement this spec is tracked in Storyboard 2003699 and uses Gerrit topics airship_suse,
airship_rhel and similar.

14 Chapter 3. Airship 1.x

https://storyboard.openstack.org/#!/story/2003699

airship-specs Documentation, Release 0.1.0

Problem description

Airship was originally developed focusing on the Ubuntu environment:

While having a well defined driver interface, the baremetal provisioner currently only supports Canonical’s
MAAS.

Promenade bootstraps only on a Ubuntu deployer.
Assumption of Debian packages in various services.

Builds and references only Ubuntu based container images.

Airship is missing a large user base if only supports Ubuntu.

Impacted components

Most Airship components will be impacted by this spec:

1.
2.

Promenade: add the ability to bootstrap on any Linux distro and add new plugins for openSUSE, CentOS, etc.

Pegleg: enhanced to build image on non Debian distros and add openSUSE, CentOS and other Linux distros to
CI gate.

Deckhand: enhanced to build image on non Debian distros and add openSUSE, CentOS and other Linux distros
to CI gate.

Armada: enhanced to build image on non Debian distro and add openSUSE, CentOS and other Linux distros to
CI gate.

Shipyard: enhanced to build image on non Debian distro and add openSUSE, CentOS and other Linux distros
CI gate.

Drydock: enhanced to provision bare metal on non Ubuntu Linux distros using Ironic driver (expect to have a
separate Spec).

Airship-in-a-Bottle: add the ability to deploy Airship-in-a-Bottle on openSUSE, CentOS, etc.

Proposed change

Container Builds

As for now, Ubuntu-based containers remain to be default to be built

CI system for the Ubuntu-based containers must not be affected by implementation of this spec (Zuul jobs,
Makefile, etc.)

Distributive-dependant Dockerfile naming convention is to add a distributive flavour suffix, optionally
specifying version after underscore: Dockerfile.<distributive flavour>[_<version>]; e.g.
Dockerfile.opensuse

Public non-Ubuntu container images are to be published along with Ubuntu-based images on quay.io under
airshipit/ organization

Repository naming convention remains exactly same for airship component. airshipit/<airship
component>;e.g. airshipit/armada

Updated image tagging naming convention is to add a dash separator suffix after tags based on
Git commit ID of the code :<git commit id>, and additional :master (branch-based) and
:latest (latest master) tags, following with a distributive flavour, optionally specifying distribution

3.1.

Approved Specs 15

https://quay.io/
https://quay.io/organization/airshipit

airship-specs Documentation, Release 0.1.0

version after underscore': <airship component>:<branch or commit-id>-<di
flavour>[_<distro major version>];e.g. armada:master-opensuse_15

stributive

* As for now, Makefiles, Shell scripts, Shell script templates in Helm charts, Ansible jobs, Zuul and Jenkins jobs
continue to work without changes for Ubuntu-based containers, and support non-Ubuntu containers by provision

of additional variables or command line arguments

Pegleg

¢ Add non Ubuntu Linux distros CI gate, including openSUSE, CentOS, etc.
— tools/gate/playbooks/docker-image-build.yaml: support Docker rpm install on non Debian

— add gate test case for openSUSE, CentOS.

Deckhand

* Container image(s)
— images/deckhand/Dockerfile: add rpm package support for non Debian Linux distros
¢ Verify Deckhand Python source code and scripts are Linux distro agnostic

» Update document for rpm package installation, e.g., getting started guide

Add Non Debian Linux support in gate playbooks

tools/gate/playbooks/docker-image-build.yaml

— tools/gate/playbooks/roles/install-postgresql/tasks/install-postgresql.yaml
— tools/gate/playbooks/roles/run-integration-tests/tasks/integration-tests.yaml
— tools/gate/roles/install-postgresql/tasks/install-postgresql.yaml

— tools/gate/roles/run-integration-tests/tasks/integration-tests.yaml

— tools/run_pifpaf.sh

— add gate test case for openSUSE, CentOS, etc.

Shipyard

* Container image(s)
— images/shipyard/Dockerfile: add rpm package for openSUSE, CentOS, etc.
— images/airflow/Dockerfile: add rpm package for openSUSE, CentOS, etc.

* Verify Shipyard Python source code and scripts are Linux distro agnostic.

* Update documentation where references Ubuntu and MAAS as the sole option.
— README.rst
— docs/source/client-user-guide.rst
— docs/source/deployment-guide.rst

¢ Add non Debian Linux support in gate playbooks

! Based on recommendation from quay.io technical support.

Linux.

16 Chapter 3

. Airship 1.x

https://quay.io/

airship-specs Documentation, Release 0.1.0

tools/gate/playbooks/roles/build-images/tasks/airship-shipyard.yaml

tools/gate/roles/build-images/tasks/airship-shipyard.yaml

tools/gate/scripts/000-environment-setup.sh

add test cases in zuul for openSUSE, CentOS, etc.

Armada

» Container image(s)

— Dockerfile: add rpm package for non Debian Linux (Docker file location is inconsistent with other
projects).

* Verify Python source code and scripts are Linux distro agnostic.

» Update documentation where references Ubuntu and MAAS as the sole option, e.g., getting-started.rst.

Add non Debian Linux support in gate playbooks
— Add rpm package support when ansible_os_family is SUSE or Red Hat
— tools/gate/playbooks/docker-image-build.yaml

— Add test cases in zuul for openSUSE, CentOS, etc.

Promenade

» Container image(s)
— Dockerfile: add rpm package for SUSE (Docker file location is inconsistent with other projects)
* Verify Python source code and scripts are Linux distro agnostic, e.g.,

— Genesis process assumes Debian-based OS. Changes are required to maintain this func-
tionality for other distros as well as logic to pick the right template, e.g., prome-
nade/templates/roles/common/etc/apt/sources.list.d.

— tests/unit/api/test_update_labels.py: label is hard coded to “ubuntubox”. which seems to be just cosmetics
— tests/unit/api/test_validatedesign.py: deb for Docker and socat

* Update documentation where references Ubuntu and MAAS as the sole option and add list of docker images for
other Linux OS than Ubuntu

— getting-started.rst
— developer-onboarding.rst

— examples: HostSystem.yaml, armada-resources.yaml

Add non Debian Linux support in gate playbooks

— tools/gate/config-templates/site-config.yaml: add rpm install for Docker and socat based on os family

tools/setup_gate.sh: add rpm install for Docker based on os family

tools/zuul/playbooks/docker-image-build.yaml

tools/cleanup.sh:

add test cases in zuul for openSUSE, CentOS, etc.

3.1. Approved Specs 17

airship-specs Documentation, Release 0.1.0

Treasuremap

¢ Update documentation to add authoring and deployment instructions for OpenSUSE, CentOS, etc. Differences
are around deb vs rpm packaging, container images, repos.

— doc/source/authoring_and_deployment.rst

— global/profiles/kubernetes-host.yaml

— global/schemas/drydock/Region/v1.yaml

— global/schemas/promenade/HostSystem/v1.yaml

— global/software/config/versions.yaml

— tools/gate/Jenkinsfile

— global/profiles/kubernetes-host.yaml

— site/airship-seaworthy/networks/common-addresses.yaml (points to ubuntu ntp server)
— site/airship-seaworthy/profiles/region.yaml (comments references “ubuntu” user)

— site/airship-seaworthy/secrets/passphrases/ubuntu_crypt_password.yaml (name hardcoded with “ubuntu”
reference)

— site/airship-seaworthy/software/charts/ucp/divingbell/divingbell.yaml (user name is hardcoded “ubuntu’)
— tools/updater.py
* Add CI gate for openSUSE, CentOS, etc.

— tools/gate/Jenkinsfile

Security impact

Do not expect any material change in security controls and/or policies.

SUSE plans to adopt the Airship AppArmor profile in the Treasuremap project.

Performance impact

Do not expect performance impact.

Alternatives

None. Extending Linux distro support is critical for Airship to expand its user base and for its developer community
to grow.

Implementation

We propose three milestones to develop the feature in an iterative approach.

Milestone 1: Multi Linux distro support in the bring your own K8s and Ceph use case. The work in this milestone is
to bring Armada, Shipyard, Deckhand and Pegleg to Linux distro agnostic, and support Ubuntu and openSUSE as the
two available options, and CentOS if there are developers familiar with CentOS join the effort.

18 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

Milestone 2: Add the ability in bootstrapping to plug in the KubeAdm and Ceph release/packages built for the under-
lying Linux distros on the existing Physical hosts. The work is focused on Promenade component.

Milestone 3: Add the ability in Drydock to provision baremetal on Linux distros in addition to Ubuntu.
Assignee(s):

SUSE is committed to implement this spec, add the openSUSE plugins and gate tests, and welcomes the community
to join the effort.

Dependencies

OpenStack Helm

1. Add the openSUSE base OS option in the OSH tool images, including cepf-config-helper, libvirt, OpenVSwitch,
tempest, vbmec.

2. Add the ability to specify OS choice in loci.sh and support Ubuntu, openSUSE, CentOS etc.

LOCI

1. Add openSUSE base OS option in all OpenStack service images in LOCI.
Airship

1. Bring your own K8s and Ceph storage. Link TBD
2. Add Ironic driver in Drydock. Link TBD

References

Any external references (other than the direct links above)

3.1.3 Spyglass

Spyglass is a data extraction tool which can interface with different input data sources to generate site manifest YAML
files. The data sources will provide all the configuration data needed for a site deployment. These site manifest YAML
files generated by spyglass will be saved in a Git repository, from where Pegleg can access and aggregate them. This
aggregated file can then be fed to Shipyard for site deployment / updates.

Problem description

During the deployment of Airship Genesis node via Pegleg, it expects that the deployment engineer provides all
the information pertained to Genesis, Controller & Compute nodes such as PXE IPs, VLANS pertaining to Storage
network, Kubernetes network, Storage disks, Host profiles, etc. as manifests/YAMLs that are easily understandable by
Pegleg. Currently there exists multiple data sources and these inputs are processed manually by deployment engineers.
Considering the fact that there are multiple sites for which we need to generate such data, the current process is
cumbersome, error-prone and time-intensive.

The solution to this problem is to automate the overall process so that the resultant work-flow has standardized opera-
tions to handle multiple data sources and generate site YAMLs considering site type and version.

3.1. Approved Specs 19

airship-specs Documentation, Release 0.1.0

Impacted components

None.

Proposed change

Proposal here is to develop a standalone stateless automation utility to extract relevant information from a given site
data source and process it against site specific templates to generate site manifests which can be consumed by Pegleg.
The data sources could be different engineering packages or extracted from remote external sources. One example of
a remote data source can be an API endpoint.

The application shall perform the automation in two stages. In the first stage it shall generate a standardized inter-
mediary YAML object after parsing extracted information from the data source. In the second stage the intermediary
YAML shall be processed by a site processor using site specific templates to generate site manifests.

Overall Architecture

o + o +
\ \ | A +
\ \ Fo————— >| |Generic| |

- + | | | |Object | |

| Tugboat (X1) | I | | | - + |

|[Plugin | N | | \ | \

T + T | \ \ \ \
\ E | | | A= + \

- + R | | | |Parser| - > Intermediary YAML

|[Remote Data | F |——+ | t————— + |

| SourcePlugin| A | \ | \

- + C | | | (Intermediary YAML)
\ E | \ \
\ \ \ | \
\ H | \ v \
\ A | | A +| (templates) tom +
\ N | \ [Site [+<——mmm |Repository |
\ D | | |Processor||-———————"—————~ >|Adapter \
\ L | | A +| (Generated tom +
\ E | \ ~ | Site Manifests)
\ R | |+ +1
\ \ \ [J2 \
\ \ \ | Templates| |
\ \ |+ +1
o + o +

1)Interface handler: Acts as an interface to support multiple plugins like Excel, Remote Data Source, etc. The
interface would define abstract APIs which would be overridden by different plugins. A plugin would implement
these APIs based on the type of data source to collect raw site data and convert them to a generic object for further
processing. For example: Consider the APIs connect_data_source() and get_host_profile(). For Excel plugin
the connect_data_source API would implement file-open methods and the get_host_profile would extract host
profile related information from the Excel file.

In the case of a remote data source (for example an API endpoint), the API “connect_data_source” shall authen-
ticate (if required) and establish a connection to the remote site and the “get_host_profile” API shall implement
the logic to extract appropriate details over the established connection. In order to support future plugins, one

20 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

needs to override these interface handler APIs and develop logic to extract site data from the corresponding data
source.

2)Parser: It processes the information obtained from generic YAML object to create an intermediary = YAML
using the following inputs: a) Global Design Rules: Common rules for generating manifest for any kind of site.
These rule are used for every plugin. for example: IPs to skip before considering allocation to host. b) Site
Config Rules: These are settings specific to a particular site. For example http_proxy, bgp asn number, etc. It
can be referred by all plugins. Sometimes these site specific information can also be received from plugin data
sources. In such cases the information from plugin data sources would be used instead of the ones specified in
site config rules.

3)Intermediary YAML: It holds the complete site information after getting it from interface handler plugin and
after application of site specific rules. It maintains a common format agnostic of the corresponding data source
used. So it act as a primary input to Site Processor for generating site manifests.

4)Tugboat(Excel Parser) Plugin: It uses the interface handler APIs to open and parse the Excel file to extract
site details and create an in memory generic YAML object. This generic object is further processed using site
specific config rules and global rules to generate an intermediary YAML. The name “Tugboat” here is used to
identify “Excel Parser”. For Excel parser the plugin shall use a Site specification file which defines the various
location(s) of the site information items in file. The location is specified by mentioning rows and columns of
the spreadsheet cell containing the specific site data.

5)Remote Data Source Plugin: It uses the interface handler APIs to connect to the data source and extract
site specific information and then construct a generic in memory YAML object. This object is then parsed
to generate an intermediary YAML. There may be situations wherein the information extracted from API
endpoints are incomplete. In such scenarios, the missing information can be supplied from Site Config Rules.

6)Site Processor: The site processor consumes the intermediary YAML and generates site manifests based on
corresponding site templates that are written in python Jinja2. For example, for template file
“baremetal.yaml.j2”, the site processor will generate “baremetal.yaml” with the information obtained from in-
termediary YAML and also by following the syntax present in the corresponding template file.

7)Site Templates(J2 templates): These define the manifest file formats for various entities like baremetal, net-
work, host-profiles, etc. The site processor applies these templates to an intermediary YAML and generates
the corresponding site manifests. For example: calico-ip-rules.yaml.j2 will generate calico-ip-rules.yaml when
processed by the site processor.

8)Repository Adapter: This helps in importing site specific templates from a repository and also push gener-
ated site manifest YAMLs. The aim of the repository adapter shall be to abstract the specific repository
operations and maintain an uniform interface irrespective of the type of repository used. It shall be possible to
add newer repositories in the future without any change to this interface. The access to this repository can be
regulated by credentials if required and those will be passed as parameters to the site specific config file.

9)Sample data flow: for example generating OAM network information from site manifests.

* Raw rack information from plugin:

vlan_network_data:
oam:
subnet: 12.0.0.64/26
vlan: '1321"

Rules to define gateway, ip ranges from subnet:

rule_ip_alloc_offset:
name: ip_alloc_offset
ip_alloc_offset:
default: 10
gateway: 1

3.1. Approved Specs 21

airship-specs Documentation, Release 0.1.0

The above rule specify the ip offset to considered to define ip address for gateway, reserved and
static ip ranges from the subnet pool. So ip range for 12.0.0.64/26 is : 12.0.0.65 ~ 12.0.0.126 The
rule “ip_alloc_offset” now helps to define additional information as follows:

— gateway: 12.0.0.65 (the first offset as defined by the field ‘gateway’)

— reserved ip ranges: 12.0.0.65 ~ 12.0.0.76 (the range is defined by adding “default” to start ip
range)

— static ip ranges: 12.0.0.77 ~ 12.0.0.126 (it follows the rule that we need to skip first 10 ip
addresses as defined by “default”)

* Intermediary YAML file information generated after applying the above rules to the raw rack infor-
mation:

network:

vlan_network_data:

oam:
network: 12.0.0.64/26
gateway: 12.0.0.65 ———————-— +

reserved_start: 12.0.0.65 |
reserved_end: 12.0.0.76 |

routes: +--> Newly derived information
- 0.0.0.0/0 \
static_start: 12.0.0.77 |
static_end: 12.0.0.126 ————+

vlan: '1321"'

» J2 templates for specifying oam network data: It represents the format in which the site manifests
will be generated with values obtained from Intermediary YAML

schema: 'drydock/Network/v1'
metadata:

data:

='] }}

schema: 'metadata/Document/v1'
name: oam
layeringDefinition:
abstract: false
layer: 'site'
parentSelector:
network_role: oam
topology: cruiser
actions:
— method: merge
path:
storagePolicy: cleartext

cidr: {{ data['network']['vlan_network_data']['ocam']['network'] }}}
routes:

— subnet: {{ data['network']['vlan_network_data']['ocam']['routes'] }}
gateway: {{ data['network']['vlan_network_data']['ocam']['gateway'] }}
metric: 100

ranges:

- type: reserved
start: {{ datal['network']['vlan_network_data']['oam']['reserved_start

end: {{ data['network']['vlan_network_data']['oam']['reserved_end'] }}

(continues on next page)

22

Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

(continued from previous page)

- type: static
start: {{ data['network']['vlan_network_ data']['ocam']['static_start'] }
-}
end: {{ data['network']['vlan_ network data']l['oam']['static_end'] }}

* OAM Network information in site manifests after applying intermediary YAML to J2 templates.:

schema:

'drydock/Network/v1'

metadata:
schema:
name:

ocam

'metadata/Document /vl

layeringDefinition:

abstract:

false

layer:

'site'!

parentSelector:
network_role:
topology:
actions:
- method:
path:
storagePolicy:
data:
cidr:

oam
cruiser

merge

cleartext

12.0.0.64/26

routes:

0.0.0.0/0
12.0.0.65

100

— subnet:
gateway:
metric:

ranges:

- type: reserved
start: 12.0.0.65

12.0.0.76

- type: static
start: 12.0.0.77

12.0.0.126

end:

end:

Security impact

The impact would be limited to the use of credentials for accessing the data source, templates and also for uploading

generated manifest files.

Performance impact

None.

3.1. Approved Specs

airship-specs Documentation, Release 0.1.0

Alternatives

No existing utilities available to transform site information automatically.

Implementation

The following high-level implementation tasks are identified: a) Interface Handler b) Plugins (Excel and a sample
Remote data source plugin) c) Parser d) Site Processor) Repository Adapter

Usage

The tool will support Excel and remote data source plugin from the beginning. The section below lists the required
input files for each of the aforementioned plugins.

 Preparation: The preparation steps differ based on selected data source.
1. Excel Based Data Source.
— Gather the following input files:

(a) Excel based site Engineering package. This file contains detail specification covering IPMI, Pub-
lic IPs, Private IPs, VLAN, Site Details, etc.

(b) Excel Specification to aid parsing of the above Excel file. It contains details about specific rows
and columns in various sheet which contain the necessary information to build site manifests.

(c) Site specific configuration file containing additional configuration like proxy, bgp information,
interface names, etc.

(d) Intermediary YAML file. In this cases Site Engineering Package and Excel specification are not
required.

2. Remote Data Source
— Gather the following input information:

(a) End point configuration file containing credentials to enable its access. Each end-point type shall
have their access governed by their respective plugins and associated configuration file.

(b) Site specific configuration file containing additional configuration like proxy, bgp information,
interface names, etc. These will be used if information extracted from remote site is insufficient.

* Program execution

1. CLI Options:

24

Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

-g, —gener- | Dump intermediary file from passed Excel and Excel spec.
ate_intermediary

-m, —gener- | Generate manifests from the generated intermediary file.
ate_manifests

-x, —excel | Path to engineering Excel file, to be passed with generate_intermediary. The -s option

PATH is mandatory with this option. Multiple engineering files can be used. For example: -x
filel.xls -x file2.xls

-S, Path to Excel spec, to be passed with generate_intermediary. The -x option is mandatory

—exel_spec along with this option.

PATH

-i, —inter- | Path to intermediary file,to be passed with generate_manifests. The -g and -x options

mediary are not required with this option.

PATH

-d, Path to the site specific YAML file [required]

—site_config

PATH

-1, —loglevel | Loglevel NOTSET:0 ,DEBUG:10, INFO:20, WARNING:30, ERROR:40, CRITI-
INTEGER CAL:50 [default:20]

-e, File containing end-point configurations like user-name password, certificates, URL,
—end_point_cprfig
—help Show this message and exit.

2. Example:

1. Using Excel spec as input data source:

Generate Intermediary: spyglass —-g —-x <DesignSpec> -s <excel spec> -d
<site-config>

Generate Manifest & Intermediary: spyglass -mg —x <DesignSpec> -s <excel spec>
-d <site-config>

Generate Manifest with Intermediary: spyglass -m -i <intermediary>
2. Using external data source as input:

Generate Manifest and Intermediary: spyglass —-m —-g —e<end_point_config> -d
<site-config>

Generate Manifest: spyglass —-m —e<end_point_config> -d <site-config>

Note: The end_point_config shall include attributes of the external data source that are necessary for its
access. Each external data source type shall have its own plugin to configure its corresponding credentials.

* Program output:

1. Site Manifests: As an initial release, the program shall output manifest files for “airship-seaworthy”
site. For example: baremetal, deployment, networks, pki, etc. Reference: https://github.com/openstack/
airship-treasuremap/tree/master/site/airship-seaworthy

2. Intermediary YAML: Containing aggregated site information generated from data sources that is used to
generate the above site manifests.

3.1. Approved Specs 25

https://github.com/openstack/airship-treasuremap/tree/master/site/airship-seaworthy
https://github.com/openstack/airship-treasuremap/tree/master/site/airship-seaworthy

airship-specs Documentation, Release 0.1.0

Future Work
1. Schema based manifest generation instead of Jinja2 templates. It shall be possible to cleanly transition to this

schema based generation keeping a unique mapping between schema and generated manifests. Currently this is
managed by considering a mapping of j2 templates with schemas and site type.

2. Ul editor for intermediary YAML
Alternatives

1. Schema based manifest generation instead of Jinja2 templates.

2. Develop the data source plugins as an extension to Pegleg.
Dependencies

1. Availability of a repository to store Jinja2 templates.

2. Availability of a repository to store generated manifests.
References

None

3.1.4 Divingbell Ansible Framework

Ansible playbooks to achieve tasks for making bare metal changes for Divingbell target use cases.

Links

The work to author and implement this spec will be tracked under this Storyboard Story

Problem description
Divingbell uses DaemonSets and complex shell scripting to make bare metal changes. This raises 2 problems: -

Increasing number of DaemonSets on each host with increasing Divingbell usecases - Reinventing the wheel by writing
complex shell scripting logic to make bare metal changes.

Impacted components

The following Airship components will be impacted by this solution:

1. Divingbell: Introducing Ansible framework to make bare metal changes
Proposed change
This spec intends to introduce Ansible framework within Divingbell which is much simpler to make any bare metal

configuration changes as compared to existing approach of writing complex shell scripting to achieve the same func-
tionality.

26 Chapter 3. Airship 1.x

https://storyboard.openstack.org/#!/story/2004690

airship-specs Documentation, Release 0.1.0

Adding playbook

Ansible playbooks should be written for making any configuration changes on the host.

Existing shell script logic for making bare metal changes lives under divingbell/templates/bin, wherever
applicable these should be replaced by newly written Ansible playbooks as described in the sections below. Ansible
playbooks would be part of the Divingbell image.

A separate directory structure needs to be created for adding the playbooks. Each Divingbell config can be a separate
role within the playbook structure.

- playbooks/
- roles/
- systcl/
- limits/
- group_vars
- all
- master.yml

Files under group_vars should be loaded as a Kubernetes ConfigMap or Secret inside the container. Existing
entries in values.yaml for Divingbell should be used for populating the entries in the file under group_vars.

This PS Initial commit for Ansible framework should be used as a reference PS for implementing the Ansibile frame-
work.

Ansible Host

With Divingbell DaemonSet running on each host mounted at hostPath, hosts should be defined as given below
within the master.yml.

hosts: all
connection: chroot

Ansible chroot plugin should be used for making host level changes. Ansible chroot plugin_

Divingbell Image

Dockerfile should be created containing the below steps:
¢ Pull base image
* Install Ansible
* Define working directory

* Copy the playbooks to the working directory

Divingbell DaemonSets

All the Divingbell DaemonSets that follow declarative and idempotent models should be replaced with a single Dae-
monSet. This DaemonSet will be responsible for populating required entries in group_vars as volumeMounts.
Ansible command to run the playbook should be invoked from within the DaemonSet spec.

The Ansible command to run the playbook should be invoked from within the DaemonSet spec.

The Divingbell DaemonSet for exec module should be left out from this framework and it should keep functioning
as a separate DaemonSet.

3.1. Approved Specs 27

https://review.openstack.org/#/c/639186/

airship-specs Documentation, Release 0.1.0

Ansible Rollback

Rollback should be achieved via the update_site action i.e. if a playbook introduces a bad change into the
environment then the recovery path would be to correct the change in the playbooks and run update_site with
new changes.

Security impact

None - No new security impacts are introduced with this design.

Performance impact

As this design reduces the number of DaemonSets being used within Divingbell, it will be an improvement in perfor-
mance.

Implementation

This implementation should start off as a separate entity and not make parallel changes by removing the existing
functonality.

New Divingbell usecases can be first targetted with the Ansible framework while existing framework can co-exist with
the new framework.

Dependencies

Adds new dependency - Ansible framework.

References

3.1.5 Introduce Redfish based OOB Driver for Drydock

Proposal to support new OOB type Redfish as OOB driver for Drydock. Redfish is new standard for Platform man-
agement driven by DMTEF.

Links

https://storyboard.openstack.org/#!/story/2003007

Problem description

In the current implementation, Drydock supports the following OOB types
1. IPMI via pyhgmi driver to manage baremetal servers
2. Libvirt driver to manage Virtual machines

3. Manual driver

28 Chapter 3. Airship 1.x

https://storyboard.openstack.org/#!/story/2003007

airship-specs Documentation, Release 0.1.0

Phygmi is python implementation for IPMI functionality. Currently phygmi supports few commands related to power
on/off, boot, events and Lenovo OEM functions. Introducing a new IPMI command in pyghmi is complex and requires
to know the low level details of the functionality like Network Function, Command and the data bits to be sent.

DMTF’s have proposed a new Standard Platform management API Redfish using a data model representation inside
of hypermedia RESTful interface. Vendors like Dell, HP supports Redfish and Rest API are exposed to perform any
actions. Being a REST and model based standard makes it easy for external tools like Drydock to communicate with
the Redfish server.

Impacted components

The following Airship components would be impacted by this solution:

1. Drydock - new OOB driver Redfish

Proposed change

Proposal is to add new OOB driver that supports all Drydock Orchestrator actions and configure the node as per
the action. The communication between the driver and node will be REST based on Redfish resources exposed by
the node. There shall be no changes in the way driver creates tasks using Orchestrator, exception handling and the
concurrent execution of tasks.

Redfish driver

Adding a new OOB driver requires to extend the base driver drydock_provisioner.drivers.driver.
OobDriver.

OOB type will be named as:

oob_types_supported = ['redfish']

All the existing Orchestrator OOB actions need to be supported. New Action classes will be created for each of the
OOB action and uses Redfish client to configure the node.:

action_class_map = {
hd_fields.OrchestratorAction.ValidateOobServices: ValidateOobServices,
hd_fields.OrchestratorAction.ConfigNodePxe: ConfigNodePxe,
hd_fields.OrchestratorAction.SetNodeBoot: SetNodeBoot,
hd_fields.OrchestratorAction.PowerOffNode: PowerOffNode,
hd_fields.OrchestratorAction.PowerOnNode: PowerOnNode,
hd_fields.OrchestratorAction.PowerCycleNode: PowerCycleNode,
hd_fields.OrchestratorAction.InterrogateOob: InterrogateOob,

Implement Action classes

Action class have to extend the base action drydock_provisioner.orchestrator.actions.
orchestrator.BaseAction. The actions are executed as threads and so each action class have to implement
the start method.

Below is the table that mentions the OOB action and the corresponding Redfish commands. Details of each redfish
command in terms of Redfish API is specified in the next section.

3.1. Approved Specs 29

airship-specs Documentation, Release 0.1.0

Table 1: Drydock Actions and redfish commands

Action Redfish Commands
ValidateOobServices | Not implemented
ConfigNodePxe Not implemented
SetNodeBoot set_bootdev, get_bootdev
PowerOffNode set_power, get_power
PowerOnNode set_power, get_power
PowerCycleNode set_power, get_power
InterrogateOob get_power

No configuration is required for the actions ValidateOobServices, ConfigNodePxe.

Redfish client

Above mentioned commands (set_bootdev, get_bootdev, set_power, get_power) will be implemented by new class
RedfishObject. This class is responsible for converting the commands to corresponding REST API and call the open-
source python implementations of redfish clients. python-redfish-library provided by DMTF is chosen as Redfish
client.

In addition, there will be Redfish API extensions related to OEM which will be specific to vendor. Based on the need,
the RedfishObject have to handle them and provide a clean interface to OOB actions.

The redfish REST API calls for the commands:

Command: get_bootdev
Request: GET https://<00B IP>/redfish/vl/Systems/<System_name>/
Response: dict["Boot"]["BootSourceOverrideTarget"]
Command: set_bootdev
Request: PATCH https://<00B IP>/redfish/vl/Systems/<System_name>/
{"Boot": {
"BootSourceOverrideEnabled": "Once",
"BootSourceOverrideTarget": "Pxe",
+}
Command: get_power
Request: GET https://<00B IP>/redfish/vl/Systems/<System_name>/
Response: dict["PowerState"]
Command : set_power
Request: POST https://<00B IP>/redfish/vl/Systems/<System_name>/Actions/

—ComputerSystem.Reset
{
"ResetType": powerstate
}
Allowed powerstate values are "On", "ForceOff", "PushPowerButton",
—"GracefulRestart"

Configuration changes

OOB driver that will be triggered by Drydock orchestrator is determined by

* availability of driver class in configuration parameter oob_driver under [plugins] section in drydock.conf

30 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

* OOB type specified in HostProfile in Site manifests

To use the Redfish driver as OOB, the OOB type in Host profile need to be set as redfish and a new entry
to be added for oob_driver in drydock.conf drydock_provisioner.drivers.oob.redfish_driver.
RedfishDriver

Sample Host profile with OOB type redfish:

schema: drydock/HostProfile/vl
metadata:
schema: metadata/Document/vl
name: global
storagePolicy: cleartext
labels:
hosttype: global_hostprofile
layeringDefinition:
abstract: true
layer: global
data:
oob:
type: 'redfish'
network: 'oob'
account: 'tier4d'
credential: 'cred'

Security impact

None

Performance impact

None

Implementation

Work Items

Add redfish driver to drydock configuration parameter oob_driver

* Add base Redfish driver derived from oob_driver.OobDriver with oob_types_supported redfish

Add RedfishObject class that uses python redfish library to talk with the node.

Add OOB action classes specified in Proposed change

Add related tests - unit test cases

Assignee(s)

Primary assignee: Hemanth Nakkina

Other contributors: PradeepKumar KS Gurpreet Singh

3.1. Approved Specs 31

airship-specs Documentation, Release 0.1.0

Dependencies

None

References

3.1.6 Drydock: Support BIOS configuration using Redfish OOB driver

Proposal to add support for configuring BIOS settings of baremetal node via Drydock. This blueprint is intended to
extend functionality of redfish OOB driver to support BIOS configuration.

Links

https://storyboard.openstack.org/#!/story/2002912

Problem description

Currently drydock does not provide a mechanism to configure BIOS settings on a baremetal node. The BIOS settings
need to be configured manually prior to triggering deployment via Airship.

Impacted components

The following Airship components would be impacted by this solution:

1. Drydock - Updates to Orchestrator actions and Redfish OOB driver

Proposed change

The idea is to provide user an option to specify the BIOS configuration of baremetal nodes as part of HardwareProfile
yaml in site definition documents. Drydock gets this information from manifest documents and whenever Orches-
trator action PrepareNodes is triggered, drydock initiates BIOS configuration via OOB drivers. As there are no new
Orchestrator actions introduced, the workflow from Shipyard —> Drydock remains the same.

This spec only supports BIOS configuration via Redfish OOB driver. Documents having BIOS configuration with oob
type other than Redfish (ipmi, libvirt) should result in an error during document validation. This can be achieved by
adding new Validator in Drydock.

Manifest changes

A new parameter bios_settings will be added to the HardwareProfile. The parameter takes a dictionary of
strings as its value. Each key/value pair corresponds to a BIOS setting that need to be configured. This provides the
deployment engineers the flexibility to modify the BIOS settings that need to be configured on baremetal node.

Sample HardwareProfile with bios_settings:

schema: 'drydock/HardwareProfile/vl'
metadata:
schema: 'metadata/Document/v1'
name: dell_r640_test
storagePolicy: 'cleartext'

(continues on next page)

32 Chapter 3. Airship 1.x

https://storyboard.openstack.org/#!/story/2002912

airship-specs Documentation, Release 0.1.0

(continued from previous page)

layeringDefinition:
abstract: false
layer: global

data:
vendor: 'Dell'’
generation: '8’
hw_version: '3'

bios_version: '2.2.3'
boot_mode: bios
bootstrap_protocol: pxe
pxe_interface: 0
bios_settings:
BootMode: Bios
BootSegRetry: Disabled
InternalUsb: Off
SriovGlobalEnable: Disabled
SysProfile: PerfOptimized
AcPwrRcvry: Last
AcPwrRcvryDelay: Immediate
device_aliases:
pxe_nicO01l:
eno3
address: '0000:01:00.0"
dev_type: 'Gig NIC'
bus_type: 'pci'

cpu_sets:
kvm: '4-43,48-87"
hugepages:
dpdk:
size: '1G'
count: 300

Update the HardwareProfile schema to include a new property bios_settings of type object. The property should
be optional to support backward compatibility.

Following will be added as part of HardwareProfile schema properties:

bios_settings:
type: 'object'

Redfish driver updates

Following OOB driver actions are introduced as part of this spec.

1. hd_fields.OrchestratorAction.ConfigBIOS To configure the BIOS settings on the node based on HardwareProfile
manifest document

To support the above actions, following redfish commands will be added - set_bios_settings, get_bios_settings

Redfish rest api calls to handle the above commands:

Command : get_bios_settings
Request: GET https://<O0B IP>/redfish/vl/Systems/<System_name>/Bios
Response: dict["Attributes"]

Command: set_bios_settings

(continues on next page)

3.1. Approved Specs 33

airship-specs Documentation, Release 0.1.0

(continued from previous page)

Request: PATCH https://<00B IP>/redfish/v1l/Systems/<System_name>/Bios/Settings
{ "Attributes": {
"settingl": "valuel",
"setting2": "valuel"

b}

The request and response objects for the above operations differ for vendors HP and Dell. Above mentioned re-
quest/response objects are for Dell. In case of HP the request/response object will be:

{
"settingl": "valuel",
"setting2": "valuel2"

In case of failures in setting BIOS configuration, the Redfish server sends the error message along with error code.
The ConfigBios action should mark the task as failure and add the error message in the task status message.

Orchestrator action updates

PrepareNodes Action currently run the following driver actions in sequence
1. hd_fields.OrchestratorAction.SetNodeBoot on OOB driver To set the boot mode to PXE
2. hd_fields.OrchestratorAction.PowerCycleNode on OOB driver To powercycle the node
3. hd_fields.OrchestratorAction.IdentifyNode on Node driver To identify the node in node driver like maas

PrepareNodes should execute the new OOB driver action as its initial step hd_fields.OrchestratorAction.
ConfigBIOS. PrepareNodes creates subtasks to execute ConfigBios action for each node and collects the subtask
status until drydock timeout conf .timeouts.drydock_timeout. In case of any failure of ConfigBios subtask
for a node, further driver actions wont be executed for that node. This is in sync with the existing design and no
changes required. ConfigBios action is not retried in case of failures.

Security impact

None

Performance impact

BIOS configuration update takes around 35 seconds when invoked from a node on same rack. This includes estab-
lishing a session, running the configuration API and logging out the session. Time for system restart is not included.
Similarly retrieving BIOS configuration takes around 18 seconds.

Alternatives

This spec only implements BIOS configuration support for Redfish OOB driver.

Implementation

34 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

Work Items

Update Hardware profile schema to support new attribute bios_setting

Update Hardware profile objects

Update Orchestrator action PrepareNodes to call OOB driver for BIOS configuration

Update Redfish OOB driver to support new action ConfigBIOS

¢ Add unit test cases

Assignee(s):

Primary Assignee: Hemanth Nakkina
Other contributors: Gurpreet Singh
Dependencies

This spec depends on Introduce Redfish based OOB Driver for Drydock story.

References

3.1.7 Deploy Kubernetes API Server w/ Ingress and Keystone Webhook

OpenStack Keystone will the be single authentication mechanism for Airship users. As such, we need to deploy a
Kubernetes API server endpoint that can utilize Keystone for authentication and authorization. The avenue to support
this is using the Kubernetes webhook admission controller with a webhook supporting Keystone.

Links

None

Problem description

While Airship component APIs should care for most lifecycle tasks for the Kubernetes cluster, there will be some
maintenance and recovery operations that will require direct access to the Kubernetes APIL. To properly secure this
API, it needs to utilize the common single sign-on that operators use for accessing Airship APIs, i.e. Keystone.
However, the external facing API should minimize risk to the core Kubernetes API servers used by other Kubernetes
core components. This specification proposes a design to maximize the security of this external facing API endpoint
and minimizes the risk to the core operations of the cluster by avoiding the need to add complexity to core apiserver
configuration or sending extra traffic through the core apiservers and Keystone.

Impacted components

The following Airship components would be impacted by this solution:

1. Promenade - Maintenance of the chart for external facing Kubernetes API servers

3.1. Approved Specs 35

https://storyboard.openstack.org/#!/story/2003007
https://docs.openstack.org/keystone
https://kubernetes.io/docs/reference/access-authn-authz/webhook/

airship-specs Documentation, Release 0.1.0

Proposed change

Create a chart, webhook_apiserver, for an external facing Kubernetes API server that would create a Kuber-
netes Ingress entrypoint for the API server and, optionally, also spin up a webhook side-car for each API server (i.e.
sidecar mode). The other mode of operation is federated mode where the webhook will be accessed over a
Kubernetes service.

A new chart is needed because the standard apiserver chart <https:/github.com/openstack/airship-
promenade/tree/master/charts/apiserver> relies on the anchor pattern creating static pods. The
webhook_apiserver chart should be based on the standard apiserver chart and use helm_toolkit standards.

The chart would provide for configuration of the Keystone webhook (also Keystone webhook addl and Keystone
webhook chart) in sidecar mode and allow for configuring the webhook service address in federated”™ mode.
The Kubernetes apiserver would be configured to only allow for authentication/authorization via webhook. No other
authorization modes would be enabled. All kube-apiserver command line options should match the with the
following exceptions:

* authorization-mode: Webhook

e audit-log-path: —

* authentication-token-webhook-config-file: path to configuration file for accessing the webhook.
* authorization-webhook-config-file: path to configuration file for accessing the webhook.

* apiserver-count: omit

* endpoint-reconciler-type: none

Webhook Configuration

The configuration for how the Kubernetes API server will contact the webhook service is stored in a YAML configu-
ration file based on the kubeconfig file format. The below example would be used in sidecar mode.

1 # clusters refers to the remote service.
2 clusters:

3 — name: keystone-webhook

4 cluster:

5 # CA for verifying the remote service.

6 certificate—authority: /path/to/webhook_ca.pem

7 # URL of remote service to query. Must use 'https'. May not include_
—parameters.

8 server: https://localhost:4443/

9

10 # users refers to the API Server's webhook configuration.
11 users:

12 - name: external-facing-api

13 user:

14 client-certificate: /path/to/apiserver_webhook_cert.pem # cert for_
—the webhook plugin to use

15 client-key: /path/to/apiserver_webhook_key.pem # key,
—matching the cert

16

17 # kubeconfig files require a context. Provide one for the API Server.
18 current-context: webhook

19 contexts:

20 - context:

36 Chapter 3. Airship 1.x

https://docs.openstack.org/openstack-helm/latest/devref/index.html
https://github.com/kubernetes/cloud-provider-openstack/blob/master/docs/using-keystone-webhook-authenticator-and-authorizer.md
https://github.com/dims/k8s-keystone-auth
https://github.com/openstack/openstack-helm-infra/tree/master/kubernetes-keystone-webhook
https://github.com/openstack/openstack-helm-infra/tree/master/kubernetes-keystone-webhook
https://v1-10.docs.kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

airship-specs Documentation, Release 0.1.0

21 cluster: keystone-webhook
22 user: external-facing-api
23 name: webhook

Documentation impact

Documentation of the overrides to this chart for controlling webhook authorization mapping policy.

Security impact

» Additional TLS certificates for apiserver <-> webhook connections
» Keystone webhook must have an admin-level Keystone account

» Optionally, the Keystone webhook minimizes attack surface by becoming a sidecar without external facing
service.

Performance impact

This should not have any performance impacts as the only traffic handled by the webhook will be from users specifi-
cally using Keystone for authentication and authorization.

Testing impact

The chart should include a Helm test that validates a valid Keystone token is usable with kubect1 to successfully
get a respond from the Kubernetes API.

Implementation
Milestone 1

Chart support for sidecar mode

Milestone 2

Addition of federated mode

Dependencies

None

References

3.1.8 Airship workflow to update Kubernetes node labels

Proposal to enhance Airship to support updating Kubernetes node labels as a triggered workflow using Shipyard as an
entrypoint, Deckhand as a document repository, Drydock as the decision maker about application of node labels, and
Promenade as the interactive layer to Kubernetes.

3.1. Approved Specs 37

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/

airship-specs Documentation, Release 0.1.0

Links

None

Problem description

Over the lifecycle of a deployed site, there is a need to maintain the labels applied to Kubernetes nodes. Prior to this
change the only Airship-supplied mechanism for this was during a node’s deployment. Effectively, the way to change
or remove labels from a deployed node is through a manual process. Airship aims to eliminate or minimize manual
action on a deploy site.

Without the ability to declaratively update the labels for a Kubernetes node, the engineers responsible for a site lose
finer-grained ability to adjust where deployed software runs — i.e. node affinity/anti-affinity. While the software’s
Helm or Armada chart could be adjusted and the site updated, the granularity of marking a single node with a label is
still missed.

Impacted components

The following Airship components would be impacted by this solution:
1. Drydock - endpoint(s) to evaluate and trigger adding or removing labels on a node
2. Promenade - endpoint(s) to add/remove labels on a node.

3. Shipyard - new workflow: update_labels

Proposed change

Note: External to Airship, the process requires updating the site definition documents describing Baremetal Nodes to
properly reflect the desired labels for a node. The workflow proposed below does not allow for addition or elimination
of node labels without going through an update of the site definition documents.

Shipyard

To achieve the goal of fine-grained declarative Kubernetes label management, a new Shipyard action will be intro-
duced: update_labels. The update_labels action will accept a list of targeted nodes as an action parameter. E.g.:

POST /v1.0/actions

{

"name" : "action name",
"parameters" : {
"target_nodes": ["nodel", "node2"]

}
}

The most recent committed configuration documents will be used to drive the labels that result on the target nodes.
e If there is no committed version of the configuration documents, the action will be rejected.

« If there are no revisions of the configuration documents marked as participating in a site action, the action will
be rejected.

38 Chapter 3. Airship 1.x

https://airship-drydock.readthedocs.io/en/latest/topology.html#host-profiles-and-baremetal-nodes

airship-specs Documentation, Release 0.1.0

A new workflow will be invoked for update_labels, being passed the configuration documents revision and the
target nodes as input, using existing parameter mechanisms.

Note: At the time of writing this blueprint, there are no other actions exposed by Shipyard that are focused on a set
of target nodes instead of the whole site. This introduces a new category of targeted actions, as opposed to the
existing site actions. Targeted actions should not set the site action labels (e.g. successful-site-action) on Deckhand
revisions as part of the workflow.

The workflow will perform a standard validation of the configuration documents by the involved components (Deck-
hand, Drydock, Promenade).

Within the Shipyard codebase, a new Drydock operator will be defined to invoke and monitor the invocation of Dry-
dock to trigger label updates. Using the task interface of Drydock, a node filter containing the target nodes will be
used to limit the scope of the request to only those nodes, along with the design reference. E.g.:

POST /v1.0/tasks

{
"action": "relabel_nodes",
"design_ref": "<deckhand_uri>",
"node_filter": {
"filter_set_type": "union",
"filter_set": [
{

"filter_type": "union",
"node_names": ["nodel", "node2"],
"node_tags": [1,

"node_labels": {},

"rack_names": [],

"rack_labels": {},

Note: Since a node filter is part of this interface, it would technically allow for other ways to assign labels across
nodes. However at this time, Shipyard will only leverage the node_names field.

After invoking Drydock (see below), the workflow step will use the top level Drydock task result, and disposition the
step as failure if any nodes are unsuccessful. This may result in a partial update. No rollbacks will be performed.

Drydock

Drydock’s task API will provide a new action relabel nodes. This action will perform necessary analysis of the
design to determine the full set of labels that should be applied to each node. Some labels are generated dynamically
during node deployment; these will need to be generated and included in the set of node labels.

Since multiple nodes can be targeted, and success or failure may occur on each, Drydock will track these as subtasks
and roll up success/failure per node to the top level task.

3.1. Approved Specs 39

airship-specs Documentation, Release 0.1.0

Promenade

For each node, Drydock will invoke Promenade to apply the set of labels to the Kubernetes node, using a PUT against
the (new) node—-labels/{node_name} endpoint. The payload of this request is a list of labels for that node.
E.g.:

PUT /v1.0/node-labels/nodel

"label-a":"true",
"label-n":"some-value"

Promenade will perform a difference of the existing node labels against the requested node labels. Promenade will
then in order:

1. apply new labels and change existing labels with new values

2. remove labels that are not in the request body

API Clients and CLlIs

The Drydock, Promenade, and Shipyard API Clients and CLI components will need to be updated to match the new
functionality defined above.

Documentation impact

Each of the identified components have associated API (and CLI) documentation that will be updated to match the
new API endpoints and associated payload formats as noted above.

Security impact

None - No new security impacts are introduced with this design. Existing mechanisms will be applied to the changes
introduced.

Performance impact

None - This workflow has no specific performance implications for the components involved.

High level process

Shipyard Workflow Drydock .
—Promenade
- + o +
| Submit Action +-———-- > | \
| update_labels | \
\ | |Drydock Task: | o= +
fomm + | relabel_node+-——--— > |Evaluate baremetal |
| | |definition; |
|[Monitor Task +————— > |generate k8s node |

(continues on next page)

40 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

(continued from previous page)

\ | Poll |labels |

| | <= + |

\ \ |Promenade: \ t——
Gy +

| | | PUT node-labels +-——————— > |Diff |
—existing node |

| | | (list of labels) | Wait | labels.
— \

\ \ | | <==————- + Add new
—labels |

\ \ tom + | Remove,,
—orphaned |

| | | labels,
— \

\ \ \ .
o \

\ \ te—————
y—————————— +

Implementation

There are no specific milestones identified for this blueprint.
https://review.openstack.org/#/c/584925/ is work that has started for Promenade.
Dependencies

None

References

3.1.9 Pegleg Secret Generation and Encryption

Pegleg is responsible for shepherding deployment manifest documents from their resting places in Git repositories to
a consumable format that is ready for ingestion into Airship. This spec expands its responsibility to account for secure
generation and encryption of secrets that are required within an Airship-based deployment.

Links

The work to author and implement this spec will be tracked under this Storyboard Story.

Problem description

Airship supports the ability to identify secret information required for functioning deployments, such as passwords
and keys; to ingest it into the site in a least-privilege-oriented fashion; and to encrypt it at rest within Deckhand.
However, lifecycle management of the secrets outside the site should be made automatable and repeatable, to facilitate
operational needs such as periodic password rotation, and to ensure that unencrypted secrets are only accessible by
authorized individuals.

3.1. Approved Specs a

https://review.openstack.org/#/c/584925/
https://storyboard.openstack.org/#!/story/2003708

airship-specs Documentation, Release 0.1.0

Impacted components

The following Airship components will be impacted by this solution:
1. Pegleg: enhanced to generate, rotate, encrypt, and decrypt secrets.
2. Promenade: PKICatalog will move to Pegleg.
3. Treasuremap: update site manifests to use new Catalogs.

4. Airship-in-a-Bottle: update site manifests to use new Catalogs.

Proposed change

PeglegManagedDocument

With this spec, the role of Pegleg grows from being a custodian of deployment manifests to additionally being
the author of certain manifests. A new YAML schema will be created to describe these documents: pegleg/
PeglegManagedDocument/v1. Documents of this type will have one or both of the following data elements,
although more may be added in the future: generated, encrypted. PeglegManagedDocuments serve as wrap-
pers around other documents, and the wrapping serves to capture additional metadata that is necessary, but separate
from the managed document proper. The managed document data will live in the data.managedDocument por-
tion of a PeglegManagedDocument.

If a PeglegManagedDocument is generated, then its contents have been created by Pegleg, and it must include
provenance information per this example:

schema: pegleg/PeglegManagedDocument/v1
metadata:
name: matches—document-name
schema: metadata/Document/vl
labels:
matching: wrapped-doc
layeringDefinition:
abstract: false
Pegleg will initially support generation at site level only
layer: site
storagePolicy: cleartext
data:
generated:
at: <timestamp>
by: <author>
specifiedBy:
repo: <...>
reference: <git ref-head or similar>
path: <PKICatalog/PassphraseCatalog details>
managedDocument :
schema: <as appropriate for wrapped document>
metadata:
storagePolicy: encrypted
schema: <as appropriate for wrapped document>
<metadata from parent PeglegManagedDocument>
<any other metadata as appropriate>
data: <generated data>

If a PeglegManagedDocument is encrypted, then its contents have been encrypted by Pegleg, and it must include
provenance information per this example:

42 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

schema: pegleg/PeglegManagedDocument /vl
metadata:
name: matches-document-name
schema: metadata/Document /vl
labels:
matching: wrapped-doc
layeringDefinition:
abstract: false
layer: matching-wrapped-doc
storagePolicy: cleartext
data:
encrypted:
at: <timestamp>
by: <author>
managedDocument :
schema: <as appropriate for wrapped document>
metadata:
storagePolicy: encrypted
schema: <as appropriate for wrapped document>
<metadata from parent PeglegManagedDocument>
<any other metadata as appropriate>
data: <encrypted string blob>

A PeglegManagedDocument that is both generated via a Catalog, and encrypted (as specified by the catalog) will
contain both generated and encrypted stanzas.

Note that this encrypted key has a different purpose than the Deckhand storagePolicy: encrypted meta-
data, which indicates an intent for Deckhand to store a document encrypted at rest in the cluster. The two can be used
together to ensure security, however: if a document is marked as storagePolicy: encrypted, then automa-
tion may validate that it is only persisted (e.g. to a Git repository) if it is in fact encrypted within a PeglegManaged-
Document.

Note also that the Deckhand st oragePolicy of the PeglegManagedDocument itself is always cleartext, since
its data stanza is not encrypted — it only wraps a document that is storagePolicy: encrypted. This should
be implemented as a Pegleg lint rule.

Document Generation

Document generation will follow the pattern established by Promenade’s PKICatalog pattern. In fact, PKICatalog
management responsibility will move to Pegleg as part of this effort. The types of documents that are expected to be
generated are certificates and keys, which are defined via PKICatalog documents now, and passphrases, which will
be defined via a new pegleg/PassphraseCatalog/v1 document. Longer-term, these specifications may be
combined, or split further (into a CertificateCatalog and KeypairCatalog), but this is not needed in the initial imple-
mentation in Pegleg. A collection of manifests may define more than one of each of these secret catalog documents if
desired.

The documents generated via PKICatalog and PassphraseCatalog will follow the PeglegManagedDocument schema
above; note that this is a change to existing PKICatalog behavior. The PKICatalog schema and associated code should
be copied to Pegleg (and renamed to pegleg/PKICatalog/v1l), and during a transition period the old and new
PKICatalog implementations will exist side-by-side with slightly different semantics. Promenade’s PKICatalog can
be removed once all deployment manifests have been updated to use the new one.

Pegleg will place generated document files in <site>/secrets/passphrases/, <site>/secrets/
certificates,or <site>/secrets/keypairs as appropriate:

* The generated filenames for passphrases will follow the pattern <passphrase—-doc—name>.yaml.

3.1. Approved Specs 43

airship-specs Documentation, Release 0.1.0

* The generated filenames for certificate authorities will follow the pattern <ca—-name>_ca.yaml.

* The generated filenames for certificates will follow the pattern <ca-name>_<certificate-doc-name>_certificate.
yaml.

e The generated filenames for certificate keys will follow the pattern
<ca-name>_<certificate-doc—-name>_key.yaml.

* The generated filenames for keypairs will follow the pattern <keypair-doc—-name>.yaml.
* Dashes in the document names will be converted to underscores for consistency.

A PassphraseCatalog will capture the following example structure:

schema: pegleg/PassphraseCatalog/vl
metadata:
schema: metadata/Document/vl
name: cluster-passphrases
layeringDefinition:
abstract: false
layer: site
storagePolicy: cleartext
data:
passphrases:

— document_name: osh-nova-password
description: Service password for Nova
encrypted: true

— document_name: osh-nova-oslo-db-password
description: Database password for Nova
encrypted: true
length: 12

The nonobvious bits of the document described above are:

* encryptedis optional, and denotes whether the generated PeglegManagedDocument will be encrypted, as
well as whether the wrapped document will have storagePolicy: encryptedor storagePolicy:
cleartext metadata. If absent, encrypted defaults to t rue.

e document_name is required, and is used to create the filename of the generated PeglegManagedDocument
manifest, and the metadata . name of the wrapped deckhand/Passphrase/v1 document. In both cases,
Pegleg will replace dashes in the document_name with underscores.

* length is optional, and denotes the length in characters of the generated cleartext passphrase data. If absent,
length defaults to 24. Note that with this length and the selected character set there will be less than 8x10748
probability of getting a new passphrase that is identical to the previous passphrase. This is sufficiently random
to ensure no duplication of rotated passphrases in practice.

* description is optional.

The encrypted key will be added to the PKICatalog schema, and adds the same semantics to PKICatalog-based
generation as are described above for PassphraseCatalog.

Pegleg CLI Changes

The Pegleg CLI interface will be extended as follows. These commands will create PeglegManagedDocument man-
ifests in the local repository. Committing and pushing the changes will be left to the operator or to script-based
automation.

For the CLI commands below which encrypt or decrypt secrets, an environment variable (e.g.
PEGLEG_PASSPHRASE will be use to capture the master passphrase to use. pegleg site secrets

44 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

rotate will use a second variable (e.g. PEGLEG_PREVIOUS_PASSPHRASE) to hold the key/passphrase being
rotated out. The contents of these keys/passphrases are not generated by Pegleg, but are created externally and set
by a deployment engineer or tooling. A configurable minimum length (default 24) for master passphrases will be
checked by all CLI commands which use the passphrase. All other criteria around passphrase strength are assumed to
be enforced elsewhere, as it is an external secret that is consumed/used by Pegleg.

pegleg site secrets generate passphrases: Generate passphrases according to all PassphraseCata-
log documents in the site. Note that regenerating passphrases can be accomplished simply by re-running pegleg
site secrets generate passphrases.

pegleg generate passphrase: A standalone version of passphrase generation. This generates a single
passphrase based on the default length, character set, and implementation described above, and outputs it to the
console. The PassphraseCatalog is not involved in this operation. This command is suitable for generation of a
highly-secure Pegleg master passphrase.

pegleg site secrets generate pki: Generate certificates and keys according to all PKICatalog docu-
ments in the site. Note that regenerating certificates can be accomplished simply by re-running pegleg site
secrets generate pki.

pegleg site secrets generate: Combines the two commands above. May be expanded in the future to
include other manifest generation activities.

pegleg site bootstrap: For now, a synonym for pegleg site secrets generate, and may be ex-
panded in the future to include other bootstrapping activities.

pegleg site secrets encrypt: Encrypt all site documents which have metadata.storagePolicy:
encrypted, and which are not already encrypted within a wrapping PeglegManagedDocument. Note that the
pegleg site secrets generate commands encrypt generated secrets as specified, so pegleg site
secrets encrypt is intended mainly for external-facing secrets which a deployment engineer brings to the site
manifests. The output PeglegManagedDocument will be written back to the filename that served as its source.

pegleg site secrets decrypt <document YAML file>: Decrypt a specific PeglegManagedDocu-
ment manifest, unwrapping it and outputting the cleartext original document YAML to standard output. This is
intended to be used when an authorized deployment engineer needs to determine a particular cleartext secret for a
specific operational purpose.

pegleg site secrets rotate passphrases: This action re-encrypts encrypted passphrases with a new
key/passphrase, and it takes the previously-used key and a new key as input. It accomplishes its task via two activities:

* For encrypted passphrases that were imported from outside of Pegleg (i.e. PeglegManagedDocuments which
lack the generated stanza), decrypt them with the old key (in-memory), re-encrypt them with the new key,
and output the results.

e Perform a fresh pegleg site secrets generate passphrases process using the new key. This
will replace all generated passphrases with new secret values for added security. There is an assumption
here that the only actors that need to know generated secrets are the services within the Airship-managed cluster,
not external services or deployment engineers, except perhaps for point-in-time troubleshooting or operational
exercises.

Similar functionality for rotating certificates (which is expected to have a different cadence than passphrase rotation,
typically) will be added in the future.

Driving deployment of a site directly via Pegleg is follow-on functionality which will collect site documents, use them
to create the genesis. sh script, and then interact directly with Shipyard to drive deployments. Its details are beyond
the scope of this spec, but when implemented, it should decrypt documents wrapped by applicable PeglegManaged-
Documents at the Ist responsible moment, and take care not to write, log, or stdout them to disk as cleartext.

Note that existing pegleg collect functionality should not be changed to decrypt encrypted secrets; this is be-
cause it writes its output to disk. If pegleg collect is called, at this point in time, the PeglegManagedDocuments
will be written (encrypted) to disk. To enable special case full site secret decryption, a ——force-decrypt flag will

3.1. Approved Specs 45

airship-specs Documentation, Release 0.1.0

be added to pegleg collect to do this under controlled circumstances, and to help bridge the gap with existing
CICD pipelines until Pegleg-driven site deployment is in place. It will leverage the PEGLEG_PASSPHRASE variable
described above.

Secret Generation

The rstr library should be invoked to generate secrets of the appropriate length and character set. This library uses
the os.urandom () function, which in turn leverages /dev/urandom on Linux, and it is suitable for cryptographic
purposes.

Characters in generated secrets will be evenly distributed across lower- and upper-case letters, digits, and punctuation
in "#8%& ()*+,-./:;<=>?@[]*_‘{I}~. Note this is equivalent to the union of Python string.ascii_letters, string.digits,
and string.punctuation.

Secret Encryption

The Python cryptography library has been chosen to implement the encryption and decryption of secrets within
Pegleg. cryptography aims to be the standard cryptographic approach for Python, and takes pains to make it
difficult to do encryption poorly (via its recipes layer), while still allowing access to the algorithmic details when
truly needed (via its hazmat layer). cryptography is actively maintained and is the target encryption library for
OpenStack as well.

The cryptography. fernet module will be used for symmetric encryption. It uses AES with a 128-bit key for
encryption, and HMAC using SHA256 for encryption.

Fernet requires as input a URL-safe, base64-encoded 32-byte encryption key, which will be derived from the master
passphrase passed into Pegleg via PEGLEG_PASSPHRASE as described above. The example for password-based
encryption from the Fernet documentation should be followed as a guide. The salt to be used in key derivation will
be configurable, and will be set to a fixed value within a built Pegleg container via an environment variable passed into
the Pegleg Dockerfile. This will allow the salt to be different on an operator-by-operator basis.

The cryptography.exceptions.InvalidSignature exception is thrown by cryptography when an
attempt is made to decrypt a message with a key that is different than the one used to encrypt a message, i.e., when
the user has supplied an incorrect phassphrase. It should be handled gracefully by Pegleg, resulting in an informative
message back to the user.

Security impact

These changes will result in a system that handles site secrets in a highly secure manner, in the face of multiple roles
and day 2 operational needs.

Performance impact

Performance impact to existing flows will be minimal. Pegleg will need to additionally decrypt secrets as part of site
deployment, but this will be an efficient operation performed once per deployment.

Alternatives

The Python secrets library presents a convenient interface for generating random strings. However, it was intro-
duced in Python 3.6, and it would be limiting to introduce this constraint on Airship CICD pipelines.

46 Chapter 3. Airship 1.x

https://cryptography.io/en/latest/fernet/

airship-specs Documentation, Release 0.1.0

The strgen library presents an even more convenient interface for generating pseudo-random strings; however, it
leverages the Python random library, which is unsuitably random for cryptographic purposes.

Deckhand already supports a storagePolicy element which indicates whether whether Deckhand will persist
document data in an encrypted state, and this flag could have been re-used by Pegleg to indicate whether a secret is
(or should be) encrypted. However, “should this data be encrypted” is a fundamentally different question than “is this
data encrypted now”, and additional metadata-esque parameters (generated, generatedLength) were desired
as well, so this proposal adds data.encrypted to indicate the point-in-time encryption status. storagePolicy
is still valuable in this context to make sure everything that should be encrypted is, prior to performing actions with it
(e.g. Git commits).

The PyCrypto library is a popular solution for encryption in Python; however, it is no longer actively maintained.
Following the lead of OpenStack and others, we opted instead for the cryptography library.

This proposed implementation writes the output of generation/encryption events back to the same source files from
which the original data came. This is a destructive operation; however, it wasn’t evident that it is problematic in any
anticipated workflow. In addition, it sidesteps challenges around naming of generated files, and cleanup of original
files.

Implementation

Please refer to the Storyboard Story for implementation planning information.

Dependencies
This work should be based on the patchset to add Git branch and revision support to Pegleg, if it is not merged by the

time implementation begins. This patchset alters the CLI interface and Git repository management code, and basing
on it will avoid future refactoring.

References

3.1.10 Airship Node Teardown
Shipyard is the entrypoint for Airship actions, including the need to redeploy a server. The first part of redeploying a
server is the graceful teardown of the software running on the server; specifically Kubernetes and etcd are of critical

concern. It is the duty of Shipyard to orchestrate the teardown of the server, followed by steps to deploy the desired
new configuration. This design covers only the first portion - node teardown

Links

None

Problem description
When redeploying a physical host (server) using the Airship Platform, it is necessary to trigger a sequence of steps

to prevent undesired behaviors when the server is redeployed. This blueprint intends to document the interaction that
must occur between Airship components to teardown a server.

Impacted components

Drydock Promenade Shipyard

3.1. Approved Specs a7

https://storyboard.openstack.org/#!/story/2003708
https://review.openstack.org/#/c/577886/

airship-specs Documentation, Release 0.1.0

Proposed change

Shipyard node teardown Process

—

. (Existing) Shipyard receives request to redeploy_server, specifying a target server.

2. (Existing) Shipyard performs preflight, design reference lookup, and validation steps.
3. (New) Shipyard invokes Promenade to decommission a node.
4

. (New) Shipyard invokes Drydock to destroy the node - setting a node filter to restrict to a single server.

91

. (New) Shipyard invokes Promenade to remove the node from the Kubernetes cluster.

Assumption: node_id is the hostname of the server, and is also the identifier that both Drydock and Promenade use to
identify the appropriate parts - hosts and k8s nodes. This convention is set by the join script produced by promenade.

Drydock Destroy Node

The APl/interface for destroy node already exists. The implementation within Drydock needs to be developed. This
interface will need to accept both the specified node_id and the design_id to retrieve from Deckhand.

Using the provided node_id (hardware node), and the design_id, Drydock will reset the hardware to a re-provisionable
state.

By default, all local storage should be wiped (per datacenter policy for wiping before re-use).

An option to allow for only the OS disk to be wiped should be supported, such that other local storage is left intact,
and could be remounted without data loss. e.g.: —preserve-local-storage

The target node should be shut down.

The target node should be removed from the provisioner (e.g. MaaS)

Responses

The responses from this functionality should follow the pattern set by prepare nodes, and other Drydock functionality.
The Drydock status responses used for all async invocations will be utilized for this functionality.

Promenade Decommission Node

Performs steps that will result in the specified node being cleanly disassociated from Kubernetes, and ready for the
server to be destroyed. Users of the decommission node API should be aware of the long timeout values that may
occur while awaiting promenade to complete the appropriate steps. At this time, Promenade is a stateless service and
doesn’t use any database storage. As such, requests to Promenade are synchronous.

POST /nodes/{node_id}/decommission

{

rel : "design",

href: "deckhand+https://{{deckhand_url}}/revisions/{{revision_id}}/rendered-
—~documents",

type: "application/x-yaml"
}

48 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

Such that the design reference body is the design indicated when the redeploy_server action is invoked through Ship-

yard.

Query Parameters:

drain-node-timeout: A whole number timeout in seconds to be used for the drain node step (default: none). In
the case of no value being provided, the drain node step will use its default.

drain-node-grace-period: A whole number in seconds indicating the grace-period that will be provided to the
drain node step. (default: none). If no value is specified, the drain node step will use its default.

clear-labels-timeout: A whole number timeout in seconds to be used for the clear labels step. (default: none). If
no value is specified, clear labels will use its own default.

remove-etcd-timeout: A whole number timeout in seconds to be used for the remove etcd from nodes step.
(default: none). If no value is specified, remove-etcd will use its own default.

etcd-ready-timeout: A whole number in seconds indicating how long the decommission node request should
allow for etcd clusters to become stable (default: 600).

Process

Acting upon the node specified by the invocation and the design reference details:

1.
2.
3.

Drain the Kubernetes node.
Clear the Kubernetes labels on the node.
Remove etcd nodes from their clusters (if impacted).

« if the node being decommissioned contains etcd nodes, Promenade will attempt to gracefully have those
nodes leave the etcd cluster.

Ensure that etcd cluster(s) are in a stable state.

* Polls for status every 30 seconds up to the etcd-ready-timeout, or the cluster meets the defined minimum
functionality for the site.

¢ A new document: promenade/EtcdClusters/v1 that will specify details about the etcd clusters deployed in
the site, including: identifiers, credentials, and thresholds for minimum functionality.

 This process should ignore the node being torn down from any calculation of health
Shutdown the kubelet.

« If this is not possible because the node is in a state of disarray such that it cannot schedule the daemonset
to run, this step may fail, but should not hold up the process, as the Drydock dismantling of the node will
shut the kubelet down.

Responses

All responses will be form of the Airship Status response.

Success: Code: 200, reason: Success
Indicates that all steps are successful.
Failure: Code: 404, reason: NotFound

Indicates that the target node is not discoverable by Promenade.

3.1. Approved Specs 49

airship-specs Documentation, Release 0.1.0

* Failure: Code: 500, reason: DisassociateStepFailure

The details section should detail the successes and failures further. Any 4xx series errors from the individual
steps would manifest as a 500 here.

Promenade Drain Node

Drain the Kubernetes node for the target node. This will ensure that this node is no longer the target of any pod
scheduling, and evicts or deletes the running pods. In the case of notes running DaemonSet manged pods, or pods that
would prevent a drain from occurring, Promenade may be required to provide the ignore-daemonsets option or force
option to attempt to drain the node as fully as possible.

By default, the drain node will utilize a grace period for pods of 1800 seconds and a total timeout of 3600 seconds (1
hour). Clients of this functionality should be prepared for a long timeout.

POST /nodes/{node_id}/drain

Query Paramters:

e timeout: a whole number in seconds (default = 3600). This value is the total timeout for the kubectl drain
command.

* grace-period: a whole number in seconds (default = 1800). This value is the grace period used by kubectl drain.
Grace period must be less than timeout.

Note: This POST has no message body

Example command being used for drain (reference only) kubectl drain —force —timeout 3600s —grace-
period 1800 —ignore-daemonsets —delete-local-data nl https://git.openstack.org/cgit/openstack/airship-promenade/
tree/promenade/templates/roles/common/ust/local/bin/promenade-teardown

Responses

All responses will be form of the Airship Status response.
¢ Success: Code: 200, reason: Success
Indicates that the drain node has successfully concluded, and that no pods are currently running
* Failure: Status response, code: 400, reason: BadRequest

A request was made with parameters that cannot work - e.g. grace-period is set to a value larger than the timeout
value.

e Failure: Status response, code: 404, reason: NotFound
The specified node is not discoverable by Promenade
* Failure: Status response, code: 500, reason: DrainNodeError

There was a processing exception raised while trying to drain a node. The details section should indicate the
underlying cause if it can be determined.

Promenade Clear Labels

Removes the labels that have been added to the target kubernetes node.

50 Chapter 3. Airship 1.x

https://git.openstack.org/cgit/openstack/airship-promenade/tree/promenade/templates/roles/common/usr/local/bin/promenade-teardown
https://git.openstack.org/cgit/openstack/airship-promenade/tree/promenade/templates/roles/common/usr/local/bin/promenade-teardown

airship-specs Documentation, Release 0.1.0

POST /nodes/{node_id}/clear—-labels

Query Parameters:

* timeout: A whole number in seconds allowed for the pods to settle/move following removal of labels. (Default
= 1800)

Note: This POST has no message body

Responses

All responses will be form of the Airship Status response.
e Success: Code: 200, reason: Success
All labels have been removed from the specified Kubernetes node.
e Failure: Code: 404, reason: NotFound
The specified node is not discoverable by Promenade
¢ Failure: Code: 500, reason: ClearLabelsError

There was a failure to clear labels that prevented completion. The details section should provide more informa-
tion about the cause of this failure.

Promenade Remove etcd Node

Checks if the node specified contains any etcd nodes. If so, this API will trigger that etcd node to leave the associated
etcd cluster:

POST /nodes/{node_id}/remove—-etcd

{

rel : "design",

href: "deckhand+https://{{deckhand_url}}/revisions/{{revision_id}}/rendered-
—~documents",

type: "application/x-yaml"
}

Query Parameters:

* timeout: A whole number in seconds allowed for the removal of etcd nodes from the targe node. (Default =
1800)

Responses

All responses will be form of the Airship Status response.
¢ Success: Code: 200, reason: Success
All etcd nodes have been removed from the specified node.
¢ Failure: Code: 404, reason: NotFound

The specified node is not discoverable by Promenade

3.1. Approved Specs 51

airship-specs Documentation, Release 0.1.0

¢ Failure: Code: 500, reason: RemoveEtcdError

There was a failure to remove etcd from the target node that prevented completion within the specified timeout,
or that etcd prevented removal of the node because it would result in the cluster being broken. The details section

should provide more information about the cause of this failure.

Promenade Check etcd

Retrieves the current interpreted state of etcd.

GET /etcd-cluster-health-statuses?design_ref={the design ref}

Where the design_ref parameter is required for appropriate operation, and is in the same format as used for the join-

scripts APL

Query Parameters:

* design_ref: (Required) the design reference to be used to discover etcd instances.

Responses

All responses will be form of the Airship Status response.

¢ Success: Code: 200, reason: Success

The status of each etcd in the site will be returned in the details section. Valid values for status are: Healthy,

Unhealthy
https://github.com/openstack/airship-in-a-bottle/blob/master/doc/source/api-conventions.rst#status-responses
{"...": "... standard status response
"details": {
"errorCount": {{n}},
"messageList": [
{ "message": "Healthy",
"error": false,
"kind": "HealthMessage",
"name": "{{the name of the etcd service}}"
} 4
{ "message": "Unhealthy"
"error": false,
"kind": "HealthMessage",
"name": "{{the name of the etcd service}}"
} 4
{ "message": "Unable to access Etcd"
"error": true,
"kind": "HealthMessage",
"name": "{{the name of the etcd service}}"
}
]
}
}

* Failure: Code: 400, reason: MissingDesignRef

Returned if the design_ref parameter is not specified

52

Chapter 3

. Airship 1.x

https://github.com/openstack/airship-in-a-bottle/blob/master/doc/source/api-conventions.rst#status-responses

airship-specs Documentation, Release 0.1.0

¢ Failure: Code: 404, reason: NotFound
Returned if the specified etcd could not be located
¢ Failure: Code: 500, reason: EtcdNotAccessible

Returned if the specified etcd responded with an invalid health response (Not just simply unhealthy - that’s a
200).

Promenade Shutdown Kubelet

Shuts down the kubelet on the specified node. This is accomplished by Promenade setting the label promenade-
decomission: enabled on the node, which will trigger a newly-developed daemonset to run something like: systemctl
disable kubelet & & systemctl stop kubelet. This daemonset will effectively sit dormant until nodes have the appropriate
label added, and then perform the kubelet teardown.

POST /nodes/{node_id}/shutdown-kubelet

Note: This POST has no message body

Responses

All responses will be form of the Airship Status response.
¢ Success: Code: 200, reason: Success
The kubelet has been successfully shutdown
¢ Failure: Code: 404, reason: NotFound
The specified node is not discoverable by Promenade
¢ Failure: Code: 500, reason: ShutdownKubeletError

The specified node’s kubelet fails to shutdown. The details section of the status response should contain reason-
able information about the source of this failure

Promenade Delete Node from Cluster

Updates the Kubernetes cluster, removing the specified node. Promenade should check that the node is
drained/cordoned and has no labels other than promenade-decomission: enabled. In either of these cases, the API
should respond with a 409 Conflict response.

POST /nodes/{node_id}/remove—from-cluster

Note: This POST has no message body

Responses

All responses will be form of the Airship Status response.

3.1. Approved Specs 53

airship-specs Documentation, Release 0.1.0

¢ Success: Code: 200, reason: Success

The specified node has been removed from the Kubernetes cluster.
e Failure: Code: 404, reason: NotFound

The specified node is not discoverable by Promenade
¢ Failure: Code: 409, reason: Conflict

The specified node cannot be deleted due to checks that the node is drained/cordoned and has no labels (other
than possibly promenade-decomission: enabled).

¢ Failure: Code: 500, reason: DeleteNodeError

The specified node cannot be removed from the cluster due to an error from Kubernetes. The details section of
the status response should contain more information about the failure.

Shipyard Tag Releases

Shipyard will need to mark Deckhand revisions with tags when there are successful deploy_site or update_site actions
to be able to determine the last known good design. This is related to issue 16 for Shipyard, which utilizes the same
need.

Note: Repeated from https://github.com/att-comdev/shipyard/issues/16

When multiple configdocs commits have been done since the last deployment, there is no ready means to determine
what’s being done to the site. Shipyard should reject deploy site or update site requests that have had multiple commits
since the last site true-up action. An option to override this guard should be allowed for the actions in the form of a
parameter to the action.

The configdocs API should provide a way to see what’s been changed since the last site true-up, not just the last
commit of configdocs. This might be accommodated by new deckhand tags like the ‘commit’ tag, but for ‘site true-
up’ or similar applied by the deploy and update site commands.

The design for issue 16 includes the bare-minimum marking of Deckhand revisions. This design is as follows:

Scenario

Multiple commits occur between site actions (deploy_site, update_site) - those actions that attempt to bring a site
into compliance with a site design. When this occurs, the current system of being able to only see what has changed
between committed and the buffer versions (configdocs diff) is insufficient to be able to investigate what has changed
since the last successful (or unsuccessful) site action. To accommodate this, Shipyard needs several enhancements.

Enhancements

1. Deckhand revision tags for site actions

Using the tagging facility provided by Deckhand, Shipyard will tag the end of site actions. Upon com-
pleting a site action successfully tag the revision being used with the tag site-action-success, and a body of
dag_id:<dag_id>

Upon completion of a site action unsuccessfully, tag the revision being used with the tag site-action-failure, and
a body of dag_id:<dag_id>

54 Chapter 3. Airship 1.x

https://github.com/att-comdev/shipyard/issues/16

airship-specs Documentation, Release 0.1.0

The completion tags should only be applied upon failure if the site action gets past document validation suc-
cessfully (i.e. gets to the point where it can start making changes via the other Airship components)

This could result in a single revision having both site-action-success and site-action-failure if a later re-
invocation of a site action is successful.

2. Check for intermediate committed revisions

Upon running a site action, before tagging the revision with the site action tag(s), the dag needs to check to see if
there are committed revisions that do not have an associated site-action tag. If there are any committed revisions
since the last site action other than the current revision being used (between them), then the action should not be
allowed to proceed (stop before triggering validations). For the calculation of intermediate committed revisions,
assume revision 0 if there are no revisions with a site-action tag (null case)

If the action is invoked with a parameter of allow-intermediate-commits=true, then this check should log that
the intermediate committed revisions check is being skipped and not take any other action.

3. Support action parameter of allow-intermediate-commits=truelfalse

In the CLI for create action, the —param option supports adding parameters to actions. The parameters passed
should be relayed by the CLI to the API and ultimately to the invocation of the DAG. The DAG as noted above
will check for the presense of allow-intermediate-commits=true. This needs to be tested to work.

4. Shipyard needs to support retrieving configdocs and rendered documents for the last successful site action, and
last site action (successful or not successful)

—successful-site-action —last-site-action These options would be mutually exclusive of —buffer or —.committed
5. Shipyard diff (shipyard get configdocs)

Needs to support an option to do the diff of the buffer vs. the last successful site action and the last site action
(succesful or not successful).

Currently there are no options to select which versions to diff (always buffer vs. committed)

support: —base-version=committed | successful-site-action | last-site-action (Default = committed) —diff-
version=buffer | committed | successful-site-action | last-site-action (Default = buffer)

Equivalent query parameters need to be implemented in the API.

Because the implementation of this design will result in the tagging of successful site-actions, Shipyard will be able
to determine the correct revision to use while attempting to teardown a node.

If the request to teardown a node indicates a revision that doesn’t exist, the command to do so (e.g. redeploy_server)
should not continue, but rather fail due to a missing precondition.

The invocation of the Promenade and Drydock steps in this design will utilize the appropriate tag based on the request
(default is successful-site-action) to determine the revision of the Deckhand documents used as the design-ref.

Shipyard redeploy_server Action

The redeploy_server action currently accepts a target node. Additional supported parameters are needed:

1. preserve-local-storage=true which will instruct Drydock to only wipe the OS drive, and any other local storage
will not be wiped. This would allow for the drives to be remounted to the server upon re-provisioning. The
default behavior is that local storage is not preserved.

2. target-revision=committed | successful-site-action | last-site-action This will indicate which revision of the de-
sign will be used as the reference for what should be re-provisioned after the teardown. The default is successful-
site-action, which is the closest representation to the last-known-good state.

These should be accepted as parameters to the action API/CLI and modify the behavior of the redeploy_server DAG.

3.1. Approved Specs 55

airship-specs Documentation, Release 0.1.0

Security impact

None. This change introduces no new security concerns outside of established patterns for RBAC controls around API
endpoints.

Performance impact

As this is an on-demand action, there is no expected performance impact to existing processes, although tearing down
a host may result in temporary degraded service capacity in the case of needing to move workloads to different hosts,
or a more simple case of reduced capacity.

Alternatives

N/A

Implementation

None at this time

Dependencies

None.

References

None

3.2 Implemented Specs

3.2.1 Deployment Grouping for Baremetal Nodes

One of the primary functionalities of the Undercloud Platform is the deployment of baremetal nodes as part of site
deployment and upgrade. This blueprint aims to define how deployment strategies can be applied to the workflow
during these actions.

Note: This document has been moved from the airship-in-a-bottle project, and is previously implemented. The format
of this document diverges from the standard template for airship-specs.

Overview

When Shipyard is invoked for a deploy_site or update_site action, there are three primary stages:
1. Preparation and Validation
2. Baremetal and Network Deployment

3. Software Deployment

56 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

During the Baremetal and Network Deployment stage, the deploy_site or update_site workflow (and perhaps other
workflows in the future) invokes Drydock to verify the site, prepare the site, prepare the nodes, and deploy the nodes.
Each of these steps is described in the Drydock Orchestrator Readme

The prepare nodes and deploy nodes steps each involve intensive and potentially time consuming operations on the
target nodes, orchestrated by Drydock and MAAS. These steps need to be approached and managed such that grouping,
ordering, and criticality of success of nodes can be managed in support of fault tolerant site deployments and updates.

For the purposes of this document phase of deployment refer to the prepare nodes and deploy nodes steps of the
Baremetal and Network deployment.

Some factors that advise this solution:
1. Limits to the amount of parallelization that can occur due to a centralized MAAS system.
2. Faults in the hardware, preventing operational nodes.
3. Miswiring or configuration of network hardware.
. Incorrect site design causing a mismatch against the hardware.
. Criticality of particular nodes to the realization of the site design.

4
5
6. Desired configurability within the framework of the Airship declarative site design.
7. Improved visibility into the current state of node deployment.

8

. A desire to begin the deployment of nodes before the finish of the preparation of nodes — i.e. start deploy-
ing nodes as soon as they are ready to be deployed. Note: This design will not achieve new forms of task
parallelization within Drydock; this is recognized as a desired functionality.

Solution

Updates supporting this solution will require changes to Shipyard for changed workflows and Drydock for the desired
node targeting, and for retrieval of diagnostic and result information.

Deployment Strategy Document (Shipyard)

To accommodate the needed changes, this design introduces a new DeploymentStrategy document into the site design
to be read and utilized by the workflows for update_site and deploy_site.

Groups

Groups are named sets of nodes that will be deployed together. The fields of a group are:

name Required. The identifying name of the group.

critical Required. Indicates if this group is required to continue to additional phases of deployment.

depends_on Required, may be empty list. Group names that must be successful before this group can be processed.

selectors Required, may be empty list. A list of identifying information to indicate the nodes that are members of this
group.

success_criteria Optional. Criteria that must evaluate to be true before a group is considered successfully complete
with a phase of deployment.

3.2. Implemented Specs 57

https://git.openstack.org/cgit/openstack/airship-drydock/tree/python/drydock_provisioner/orchestrator/readme.md

airship-specs Documentation, Release 0.1.0

Criticality

¢ Field: critical
¢ Valid values: true | false

Each group is required to indicate true or false for the critical field. This drives the behavior after the deployment of
baremetal nodes. If any groups that are marked as critical: true fail to meet that group’s success criteria, the workflow
should halt after the deployment of baremetal nodes. A group that cannot be processed due to a parent dependency
failing will be considered failed, regardless of the success criteria.

Dependencies

¢ Field: depends_on
* Valid values: [] or a list of group names

Each group specifies a list of depends_on groups, or an empty list. All identified groups must complete successfully
for the phase of deployment before the current group is allowed to be processed by the current phase.

* A failure (based on success criteria) of a group prevents any groups dependent upon the failed group from being
attempted.

* Circular dependencies will be rejected as invalid during document validation.

 There is no guarantee of ordering among groups that have their dependencies met. Any group that is ready for
deployment based on declared dependencies will execute. Execution of groups is serialized - two groups will
not deploy at the same time.

Selectors

¢ Field: selectors
¢ Valid values: [] or a list of selectors

The list of selectors indicate the nodes that will be included in a group. Each selector has four available filtering values:
node_names, node_tags, node_labels, and rack_names. Each selector is an intersection of this critera, while the list of
selectors is a union of the individual selectors.

* Omitting a criterion from a selector, or using empty list means that criterion is ignored.
* Having a completely empty list of selectors, or a selector that has no criteria specified indicates ALL nodes.

* A collection of selectors that results in no nodes being identified will be processed as if 100% of nodes success-
fully deployed (avoiding division by zero), but would fail the minimum or maximum nodes criteria (still counts
as 0 nodes)

 There is no validation against the same node being in multiple groups, however the workflow will not resubmit
nodes that have already completed or failed in this deployment to Drydock twice, since it keeps track of each
node uniquely. The success or failure of those nodes excluded from submission to Drydock will still be used for
the success criteria calculation.

E.g.:

selectors:
— node_names:
- node01
- node02

(continues on next page)

58 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

(continued from previous page)

rack_names:
- rackO01l
node_tags:
- control
— node_names:
- node04
node_labels:
— ucp_control_plane: enabled

Will indicate (not really SQL, just for illustration):

SELECT nodes
WHERE node_name in ('node0Ol1', 'node02")
AND rack_name in ('rackO01l")
AND node_tags in ('control'")
UNION
SELECT nodes
WHERE node_name in ('node04"')
AND node_label in ('ucp_control _plane: enabled")

Success Criteria

¢ Field: success_criteria
* Valid values: for possible values, see below

Each group optionally contains success criteria which is used to indicate if the deployment of that group is successful.
The values that may be specified:

percent_successful_nodes The calculated success rate of nodes completing the deployment phase.
E.g.: 75 would mean that 3 of 4 nodes must complete the phase successfully.

This is useful for groups that have larger numbers of nodes, and do not have critical minimums or are not
sensitive to an arbitrary number of nodes not working.

minimum_successful_nodes An integer indicating how many nodes must complete the phase to be considered suc-
cessful.

maximum_failed_nodes An integer indicating a number of nodes that are allowed to have failed the deployment
phase and still consider that group successful.

When no criteria are specified, it means that no checks are done - processing continues as if nothing is wrong.

‘When more than one criterion is specified, each is evaluated separately - if any fail, the group is considered failed.

Example Deployment Strategy Document

This example shows a deployment strategy with 5 groups: control-nodes, compute-nodes-1, compute-nodes-2,
monitoring-nodes, and ntp-node.

schema: shipyard/DeploymentStrategy/v1l
metadata:

schema: metadata/Document /vl

name: deployment-strategy

(continues on next page)

3.2. Implemented Specs 59

airship-specs Documentation, Release 0.1.0

(continued from previous page)

layeringDefinition:
abstract: false
layer: global
storagePolicy: cleartext
data:
groups:

— name: control-nodes
critical: true
depends_on:

— ntp-node

selectors:

— node_names: []
node_labels: []
node_tags:

- control

rack_names:

- rack03
success_criteria:

percent_successful_nodes:
minimum_successful_nodes:

maximum_failed_nodes: 1
— name: compute-nodes-1
critical: false
depends_on:

- control-nodes

selectors:

— node_names: []
node_labels: []
rack_names:

- rackO01
node_tags:
— compute
success_criteria:

percent_successful_nodes:

- name: compute-nodes-2
critical: false
depends_on:

- control-nodes

selectors:

- node_names: []
node_labels: []
rack_names:

- rack02
node_tags:
— compute
success_criteria:

percent_successful_nodes:

— name: monitoring-nodes
critical: false
depends_on: []
selectors:

— node_names: []
node_labels: []
node_tags:

- monitoring
rack_names:
- rack03

50

50

(continues on next page)

60

Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

(continued from previous page)

- rack02
- rack01l
- name: ntp-node
critical: true
depends_on: []
selectors:
- node_names:

- ntp0l
node_labels: []
node_tags: []
rack_names: []

success_criteria:
minimum_successful_nodes: 1

The ordering of groups, as defined by the dependencies (depends-on fields):

| ntp-node | | monitoring-nodes |

\ \
V. V.

| compute-nodes-1 | | compute-nodes-2 |

Given this, the order of execution could be:
* ntp-node > monitoring-nodes > control-nodes > compute-nodes-1 > compute-nodes-2
* ntp-node > control-nodes > compute-nodes-2 > compute-nodes-1 > monitoring-nodes
* monitoring-nodes > ntp-node > control-nodes > compute-nodes-1 > compute-nodes-2

* and many more ... the only guarantee is that ntp-node will run some time before control-nodes, which will run
sometime before both of the compute-nodes. Monitoring-nodes can run at any time.

Also of note are the various combinations of selectors and the varied use of success criteria.
Deployment Configuration Document (Shipyard)

The existing deployment-configuration document that is used by the workflows will also be modified to use the existing
deployment_strategy field to provide the name of the deployment-straegy document that will be used.

The default value for the name of the DeploymentStrategy document will be deployment—-strategy.

Drydock Changes

APl and CLI

* A new API needs to be provided that accepts a node filter (i.e. selector, above) and returns a list of node names
that result from analysis of the design. Input to this API will also need to include a design reference.

3.2. Implemented Specs 61

airship-specs Documentation, Release 0.1.0

* Drydock needs to provide a “tree” output of tasks rooted at the requested parent task. This will provide the
needed success/failure status for nodes that have been prepared/deployed.

Documentation

Drydock documentation will be updated to match the introduction of new APIs

Shipyard Changes

APl and CLI

¢ The commit configdocs api will need to be enhanced to look up the DeploymentStrategy by using the Deploy-
mentConfiguration.

* The DeploymentStrategy document will need to be validated to ensure there are no circular dependencies in the
groups’ declared dependencies (perhaps NetworkX).

* A new API endpoint (and matching CLI) is desired to retrieve the status of nodes as known to Drydock/MAAS
and their MAAS status. The existing node list API in Drydock provides a JSON output that can be utilized for
this purpose.

Workflow

The deploy_site and update_site workflows will be modified to utilize the DeploymentStrategy.

» The deployment configuration step will be enhanced to also read the deployment strategy and pass the informa-
tion on a new xcom for use by the baremetal nodes step (see below)

* The prepare nodes and deploy nodes steps will be combined to perform both as part of the resolution of an overall
baremetal nodes step. The baremetal nodes step will introduce functionality that reads in the deployment
strategy (from the prior xcom), and can orchestrate the calls to Drydock to enact the grouping, ordering and
success evaluation. Note that Drydock will serialize tasks; there is no parallelization of prepare/deploy at this
time.

Needed Functionality

* function to formulate the ordered groups based on dependencies (perhaps NetworkX)

* function to evaluate success/failure against the success criteria for a group based on the result list of succeeded
or failed nodes.

* function to mark groups as success or failure (including failed due to dependency failure), as well as keep track
of the (if any) successful and failed nodes.

* function to get a group that is ready to execute, or ‘Done’ when all groups are either complete or failed.
* function to formulate the node filter for Drydock based on a group’s selectors

* function to orchestrate processing groups, moving to the next group (or being done) when a prior group com-
pletes or fails.

* function to summarize the success/failed nodes for a group (primarily for reporting to the logs at this time).

62

Chapter 3. Airship 1.x

https://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.dag.topological_sort.html
https://networkx.github.io/documentation/networkx-1.9/reference/generated/networkx.algorithms.dag.topological_sort.html

airship-specs Documentation, Release 0.1.0

Process

The baremetal nodes step (preparation and deployment of nodes) will proceed as follows:
1. Each group’s selector will be sent to Drydock to determine the list of nodes that are a part of that group.
* An overall status will be kept for each unique node (not started | prepared | success | failure).

* When sending a task to Drydock for processing, the nodes associated with that group will be sent as a
simple node_name node filter. This will allow for this list to exclude nodes that have a status that is not
congruent for the task being performed.

— prepare nodes valid status: not started
— deploy nodes valid status: prepared

2. In a processing loop, groups that are ready to be processed based on their dependencies (and the success criteria
of groups they are dependent upon) will be selected for processing until there are no more groups that can be
processed. The processing will consist of preparing and then deploying the group.

* The selected group will be prepared and then deployed before selecting another group for processing.

* Any nodes that failed as part of that group will be excluded from subsequent deployment or preparation of
that node for this deployment.

— Excluding nodes that are already processed addresses groups that have overlapping lists of nodes due
to the group’s selectors, and prevents sending them to Drydock for re-processing.

— Evaluation of the success criteria will use the full set of nodes identified by the selector. This means
that if a node was previously successfully deployed, that same node will count as “successful” when
evaluating the success criteria.

» The success criteria will be evaluated after the group’s prepare step and the deploy step. A failure to meet
the success criteria in a prepare step will cause the deploy step for that group to be skipped (and marked
as failed).

* Any nodes that fail during the prepare step, will not be used in the corresponding deploy step.

e Upon completion (success, partial success, or failure) of a prepare step, the nodes that were sent for
preparation will be marked in the unique list of nodes (above) with their appropriate status: prepared or
failure

* Upon completion of a group’s deployment step, the nodes status will be updated to their current status:
success or failure.

4. Before the end of the baremetal nodes step, following all eligible group processing, a report will be logged to
indicate the success/failure of groups and the status of the individual nodes. Note that it is possible for individual
nodes to be left in not started state if they were only part of groups that were never allowed to process due to
dependencies and success criteria.

5. At the end of the baremetal nodes step, if any nodes that have failed due to timeout, dependency failure, or suc-
cess criteria failure and are marked as critical will trigger an Airflow Exception, resulting in a failed deployment.

Notes:

* The timeout values specified for the prepare nodes and deploy nodes steps will be used to put bounds on the
individual calls to Drydock. A failure based on these values will be treated as a failure for the group; we need to
be vigilant on if this will lead to indeterminate states for nodes that mess with further processing. (e.g. Timed
out, but the requested work still continued to completion)

3.2. Implemented Specs 63

airship-specs Documentation, Release 0.1.0

Example Processing

Using the defined deployment strategy in the above example, the following is an example of how it may process:

Start

\
\
\
\Y
\
\
\Y
\
\
\Y
\
\
\Y
\
\
\
F

prepare ntp-node
deploy ntp-node

prepare control-nodes
deploy control-nodes

prepare monitoring-nodes
deploy monitoring-nodes

prepare compute-nodes—2
deploy compute-nodes-—2

prepare compute-nodes-—1
deploy compute-nodes-—1

inish (success)

<SUCCESS>
<SUCCESS>

<SUCCESS>
<SUCCESS>

<SUCCESS>
<SUCCESS>

<SUCCESS>
<SUCCESS>

<SUCCESS>
<SUCCESS>

If there were a failure in preparing the ntp-node, the following would be the result:

Start

M — — g —— < ——<—— < — — —

prepare ntp-node
deploy ntp-node

prepare control-nodes
deploy control-nodes
prepare monitoring-nodes
deploy monitoring-nodes
prepare compute-nodes-—2
deploy compute-nodes-2
prepare compute-nodes-—1
deploy compute-nodes-—1
inish

<FAILED>
<FAILED, due

<FAILED, due
<FAILED, due

<SUCCESS>
<SUCCESS>

<FAILED, due
<FAILED, due

<FAILED, due
<FAILED, due

to

to
to

to
to

to
to

(failed due to critical group failed)

prepare failure>

dependency>
dependency>

dependency>
dependency>

dependency>
dependency>

If a failure occurred during the deploy of compute-nodes-2, the following would result:

Start
\
| prepare ntp-node <SUCCESS>
| deploy ntp-node <SUCCESS>
Y
| prepare control-nodes <SUCCESS>
| deploy control-nodes <SUCCESS>
Y
| prepare monitoring-nodes <SUCCESS>
| deploy monitoring-nodes <SUCCESS>
Y
(continues on next page)
64 Chapter 3. Airship 1.x

airship-specs Documentation, Release 0.1.0

(continued from previous page)

| prepare compute-nodes-—2 <SUCCESS>
| deploy compute-nodes-2 <FAILED>
\%

| prepare compute-nodes-—1 <SUCCESS>
| deploy compute—-nodes-—1 <SUCCESS>
\

F

inish (success with some nodes/groups failed)

Schemas

A new schema will need to be provided by Shipyard to validate the DeploymentStrategy document.

Documentation

The Shipyard action documentation will need to include details defining the DeploymentStrategy document (mostly
as defined here), as well as the update to the DeploymentConfiguration document to contain the name of the Deploy-
mentStrategy document.

3.2. Implemented Specs 65

airship-specs Documentation, Release 0.1.0

66 Chapter 3. Airship 1.x

Index

A

Airship, 11, 13, 14
airshipctl, 7

Ansible, 26
API, 11,13
B

BIOS configuration, 32
bootstrap, 7

C

CLL 7,11, 13
containers, 14
creating specs, 4

D

Deployment grouping, 56
Divingbell, 26

Drydock, 37, 47, 56
drydock, 32

E

ephemeral host, 7

G

getting started, 3
GUL 11, 13

I

image, 7
instructions, 3
1SO, 7

K

Kubernetes, 35
Kubernetes node labels, 37

M

multi-linux-distros, 14

P

Pegleg, 41
Promenade, 35, 37, 47

R

redfish, 32

S

Security, 35, 41

Shipyard, 11, 13, 37,47, 56

Shipyard Documents
DeploymentStrategy, 57

T

Teardown node, 47
template, 4

W

workflow, 37, 56
redeploy_server, 47

67

	About Specs
	Airship 2.x
	Airship 1.x
	Index

